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IDENTIFICATION OF NONSEPARABLE MODELS USING
INSTRUMENTS WITH SMALL SUPPORT

BY ALEXANDER TORGOVITSKY1

I consider nonparametric identification of nonseparable instrumental variables mod-
els with continuous endogenous variables. If both the outcome and first stage equations
are strictly increasing in a scalar unobservable, then many kinds of continuous, discrete,
and even binary instruments can be used to point-identify the levels of the outcome
equation. This contrasts sharply with related work by Imbens and Newey (2009) that re-
quires continuous instruments with large support. One implication is that assumptions
about the dimension of heterogeneity can provide nonparametric point-identification
of the distribution of treatment response for a continuous treatment in a randomized
controlled experiment with partial compliance.

KEYWORDS: Nonseparable models, endogeneity, unobserved heterogeneity, quan-
tile treatment effects, nonparametric identification, instrumental variables.

1. INTRODUCTION AND MODEL

SUPPOSE THAT A SCALAR RESPONSE VARIABLE Y is determined as

Y = g∗(X�W �ε)�(1)

where X is a dx vector of continuous explanatory variables (treatments), W
are observed covariates, ε is a scalar unobservable, and g∗ is an unknown
function. This specification is nonseparable (not additively separable) in the
latent term, ε, which allows it to capture unobserved heterogeneity in the ef-
fect of X on Y . Economic theory and empirical evidence strongly suggest that
such heterogeneous treatment effects are a pervasive feature of economic data
(Heckman (2001); Imbens (2007)).

A common concern is thatX may be endogenous, that is, statistically depen-
dent with ε, even conditional on W . For example, if Y is a schooling outcome
for a school or an individual student, X is a measure of class size, and W are
observable socioeconomic variables, then family sorting on latent preferences
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title “Identification and Estimation of Nonparametric Quantile Regressions With Endogeneity”
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may lead to ε ⊥⊥�X|W . I consider nonparametric identification of g∗ in the
presence of such endogeneity. Under a common normalization discussed sub-
sequently, g∗ determines the distribution of the counterfactual random vari-
able Yx ≡ g∗(x�w�ε), conditional on W = w. This counterfactual distribution
is of interest because it describes the impact on Y of exogenously setting X
to x for the population subgroup determined by W = w. (For ease of nota-
tion, I suppress W throughout the identification analysis. All assumptions and
results can be understood as conditional on W .)

A popular strategy for addressing endogeneity is to utilize the variation of an
observable instrument Z that is excluded from (1). The existing nonparametric
point-identification results for nonseparable models like (1) with X continu-
ously distributed require Z to also be continuously distributed.2 Yet discrete
instruments are widely used in practice. Many instruments employed in empir-
ical work are only binary, such as the intent-to-treat in a randomized controlled
experiment with partial compliance.

This paper shows that instruments with small support, that is, instruments
that are binary, discrete, or continuous but without large support, can in fact
be used to point-identify g∗ under two commonly used assumptions about the
dimension of unobserved heterogeneity. The first assumption (called G.S be-
low) is that ε is scalar and that g∗ is strictly monotone in ε. The second assump-
tion (called FS below) is the existence of a first stage equation that is strictly
monotone in a scalar unobservable that (jointly with ε) is independent of Z.
Formally, the assumptions are as follows.

ASSUMPTION C: The random variables Y |X = x, Z = z and X|Z = z are
(absolutely) continuously distributed for all x and z.

ASSUMPTION G: Let G denote the collection of admissible outcome functions.
For simplicity, every g ∈ G is assumed to be defined everywhere on Rdx+1. Assume
that g∗ ∈ G and that the following statements hold:

G.C (Continuity). Each g ∈ G is everywhere continuous.
G.S (Scalar outcome heterogeneity). The function g(x� ·) is strictly increas-

ing for every x and every g ∈ G.
G.N (Normalization). If g�g′ ∈ G are distinct on supp(X�ε), then there does

not exist a strictly increasing function ψ such that g(x�e) = g′(x�ψ(e)) for all
(x� e) ∈ supp(X�ε).3

2These results include those found in Chesher (2003), Chernozhukov and Hansen (2005),
Florens, Heckman, Meghir, and Vytlacil (2008), and Imbens and Newey (2009). A partial ex-
ception to this statement is Chesher (2007), who allows for Z to be discrete but point-identifies
g∗(x′� e)− g∗(x′′� e) at values x′, x′′, and e that depend on the distribution of (X�ε�Z).

3The support of a random vector X , denoted supp(X), is defined as the smallest closed set S
such that P[X ∈ S] = 1.
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ASSUMPTION FS: There exists an unobserved dx vector η≡ (η1� � � � �ηdx) and
functions hk such that Xk = hk(Z�ηk) for each k= 1� � � � � dx and such that the
following statements hold:

FS.E (Exogenous instrument). The instrument is independent of the latent
variables: Z ⊥⊥ (η�ε).

FS.S (Scalar first stage heterogeneity). The function hk(z� ·) is strictly in-
creasing for every z and k.

Assumption C requires both Y and X to be continuously distributed.
The scalar heterogeneity assumptions (G.S and FS) are the key restrictions

in this model.4 Assumption G.S imposes rank invariance on Y with respect
to X , meaning that FYx(Yx) = Fε(ε) = FYx′ (Yx′) for any x, x′.5 Rank invari-
ance can be interpreted as positing an underlying proneness or ranking of units
for Y that is not affected by counterfactual manipulations of X . For example,
if rank invariance holds, then conditional on observed covariates, a relatively
high performing school (Yx) with a small class size (X = x) would also be rela-
tively high performing (Yx′) if it had a large class size (X = x′). The scalar first
stage heterogeneity assumption, FS, similarly imposes rank invariance in the
effect of Z on X .6

Matzkin (2003) showed that G.N is a necessary condition for point-
identification of g∗ under G.S and provided sufficient conditions for G.N.
These conditions can be viewed as normalizations with the effect of fixing
the units of g∗ and ε, thereby endowing g∗ with a concrete interpretation.
One easily interpretable normalization is that εg ≡ g−1(X�Y) ∼ Unif[0�1]
for every g ∈ G, where g−1(x� ·) denotes the inverse of g with respect to
its last component. In this case, QYx(e) = g∗(x� e) is the eth quantile of the
counterfactual distribution of Yx. The eth quantile treatment effect of an ex-
ogenous (or causal) shift from x to x′ is then given by QYx′ (e) − QYx(e) =
g∗(x′� e)− g∗(x� e).7 See Matzkin (2003) for other normalizations. The results
in this paper hold for any normalization that implies G.N.

4Note that FS.S by itself is without loss of generality given Assumption C. (Take hk(z� ·) to
be the conditional-on-[Z = z] quantile function of Xk.) The restrictiveness of FS.S comes from
simultaneously maintaining FS.E. Hence, I refer to the entirety of FS as the scalar heterogeneity
assumption for the first stage.

5Throughout the paper, I use the notation FA and FA|B(·|b) for the unconditional and
conditional-on-[B = b] distribution functions of a random variable A. Similarly, QA and
QA|B(·|b) denote unconditional and conditional quantile functions.

6Rank invariance was introduced by Doksum (1974) and was revisited more recently by
Heckman, Smith, and Clements (1997) and Chernozhukov and Hansen (2005). Chernozhukov
and Hansen (2005) introduced a slightly weaker alternative to rank invariance that they call rank
similarity. Rank similarity allows the ranks to deviate from a common ranking as long as the de-
viations are exogenous. Assumption G.S can be replaced by a rank similarity condition without
affecting the results of this paper.

7Quantile treatment effects have attracted considerable attention among both theoretical and
applied researchers interested in distributional effects. See, for example, Abadie, Angrist, and
Imbens (2002), Bitler, Gelbach, and Hoynes (2006), Firpo (2007), and Djebbari and Smith (2008).
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Imbens and Newey (2009) considered identification of the same model (with
dx = 1), except they did not impose G.S, instead allowing ε to be a vector
of arbitrary dimension.8 Both G.S and FS are arguably strong assumptions.
As emphasized by Imbens (2007) and Hoderlein and Mammen (2007, 2009),
many ideal structural relationships in economics cannot be characterized as
depending monotonically on a single latent term. The main point of this pa-
per is that G.S and FS together also have tremendous identifying content,
and, in particular, allow one to dispense with the undesirable large support
assumption in Imbens and Newey (2009).9 The extreme and counterintuitive
manifestation of this point is that G.S and FS combined enable nonparamet-
ric point-identification of the infinite-dimensional function g∗ under relatively
weak conditions even when Z ∈ {0�1} is binary.

2. THE IDENTIFIED SET

Assumption FS implies that (ε�V )⊥⊥Z, where Vk ≡ FXk|Z(Xk|Z) is the con-
ditional rank ofXk and V ≡ (V1� � � � � Vdx) is the vector of these ranks.10 This im-
plication characterizes the identified set. A misspecification test can be based
on the nonemptyness of this set.

THEOREM 1: The identified set is G∗ ≡ {g ∈ G : (g−1(X�Y)�V )⊥⊥Z}.
Since X , Y , Z, and V are all features of the observed data, Theorem 1

enables one to determine whether a given g ∈ G is in the identified set. In
Torgovitsky (2013), I use Theorem 1 to construct an estimator of g∗ under the
point-identifying assumptions discussed subsequently.

3. SUFFICIENT CONDITIONS FOR POINT IDENTIFICATION

In this section, I show that g∗ is point-identified on supp(X�ε) under natural
assumptions about the strength of the dependence between X and Z. These
assumptions take different forms, depending on whetherZ has a continuous or
discrete distribution. The results for the continuous and discrete cases use the
same preliminary arguments, but differ at a crucial stage. Since the result when
Z is continuous is less remarkable, it is discussed in the Supplemental Material
(Torgovitsky (2015)). Here, I discuss the preliminary arguments common to
both results and then discuss the sequencing argument used in the case where

8As a consequence, they do not require G.N and their model also covers cases where Y is
discrete.

9A similar point is made by Florens et al. (2008), who show that large support can be weakened
to “measurable separability” if g∗ has a particular polynomial structure in unobservables. Their
analysis still requires Z to be continuously distributed.

10As observed by Imbens and Newey (2009) (their Theorem 1), Assumptions C and FS imply
that Vk = Fηk(ηk) and that (ε�Fη1(η1)� � � � �Fηdx (ηdx ))⊥⊥Z, that is, (ε�V )⊥⊥Z.
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Z is discrete. This analysis is most straightforward when X is scalar (dx = 1),
so I maintain that assumption for the remainder of the main text. Results for
dx > 1 are discussed in the Supplemental Material.

The identification analysis is based on the implication of Assumption FS
that ε ⊥⊥ Z|V and the implication of Assumption C that for x ∈ X ◦

z ≡
int suppX|Z = z, the event [X = x�Z = z] is equivalent to the event [V =
FX|Z(x|z)�Z = z].11 Together, these imply that if

FX|Z
(
xa|za) = v= FX|Z

(
xb|zb) for xa ∈X ◦

za and xb ∈X ◦
zb
�

then the distributions of ε|X = xa�Z = za and ε|X = xb�Z = zb are the same
and equal to that of ε|V = v. As a result, any differences between the observed
distributions of Y |X = xa, Z = za and Y |X = xb�Z = zb should be solely due
to the direct effect that g∗ has on Y when X is shifted from xa to xb.

This direct effect can be isolated with the aid of G.S, which allows real-
izations of ε to be expressed uniquely as realizations of Y .12 Specifically, if
y ∈ Y◦

xa�za ≡ int supp(Y |X = xa�Z = za), then by G.S there exists a unique e
such that y = g∗(xa� e). The value of g∗(xb� e) can be recovered by inverting
the relationship

FY |XZ
(
y|xa� za) = P

[
ε≤ e|X = xa�Z = za]

= P
[
ε≤ e|X = xb�Z = zb] = FY |XZ

(
g∗(xb� e)|xb� zb)�

IfX ⊥⊥Z, then necessarily xa = xb and the preceding expression has no identi-
fying content. As in other instrumental variable models, dependence between
X and Z is required to generate exogenous variation in X .

The preceding intuition is incomplete for two reasons. First, to establish
point-identification of g∗ as a function, it needs to be shown that g∗(xa� e) can
be exogenously compared to g∗(x� e) for any other supported x, not just xb.
This is demonstrated in the Supplemental Material using differential argu-
ments when Z is continuously distributed. It will be shown in the main text
using a sequencing argument when Z is binary or more generally discrete. Sec-
ond, the value of e, which was defined implicitly in terms of g∗, is still unknown.
As a result, the intuition characterizes the effect of exogenously shifting X to
xb for an agent who endogenously attained Y = y andX = xa. That is, it point-
identifies g∗(xb� (g∗)−1(xa� y)). To point-identify g∗(xb� e) for a particular e of
interest requires a more involved argument.

11Calligraphic capital letters Y , X , Z , and E are used to denote supports in the remainder of
the paper. Subscripts denote conditional supports (where the conditioning will be obvious) and
open circles denote interiors.

12This part of the argument is similar to arguments used in Altonji and Matzkin (2005) and
Athey and Imbens (2006).
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To fill in these gaps and formalize the intuition, consider Ig(x� e) ≡ g−1(x�
g∗(x� e)) as a measure of the difference between g∗ and any g ∈ G. By construc-
tion, Ig(x� e)= e if and only if g(x�e)= g∗(x� e). In addition, since Ig(x� ·) is
strictly increasing, the normalization G.N implies that if Ig(x� e) is not a func-
tion of x for (x� e) ∈ supp(X�ε), say Ig(x� e) = Jg(e), then g(x�e) = g∗(x� e)
on supp(X�ε). Hence, point-identification can be established by showing that
if g ∈ G∗, then Ig(x� e)= Jg(e) for all such (x� e).13

With this goal in mind, suppose that g ∈ G∗ and recall the definition εg ≡
g−1(X�Y). By G.S,

Qεg |XZ(t|x�z)= g−1
(
x�QY |XZ(t|x�z)

)
and(2)

QY |XZ(t|x�z)= g∗(x�Qε|XZ(t|x�z)
)
�

Combining the two expressions in (2) gives

Ig
(
x�Qε|XZ(t|x�z)

) =Qεg |XZ(t|x�z)�(3)

Substituting t = Fε|XZ(e|x�z) for any e ∈ E ◦
x�z ≡ int supp(ε|X = x�Z = z) into

(3) yields

Ig(x� e)=Qεg |XZ
(
Fε|XZ(t|x�z)|x�z

)
�(4)

Since ε⊥⊥Z|V and εg ⊥⊥Z|V for g ∈ G∗ by Theorem 1, and because the event
[X = x�Z = z] is equivalent to the event [V = FX|Z(x|z)�Z = z] for x ∈ X ◦

z ,
(4) can be rewritten with Dg(v� e)≡Qεg |V (Fε|V (e|v)|v) as

Ig(x� e)=Dg
(
FX|Z(x|z)� e

)
for x ∈X ◦

z � e ∈ E ◦
x�z�(5)

From (5), it follows that

FX|Z
(
xa|za) = FX|Z

(
xb|zb) implies Ig

(
xa� e

) = Ig(xb� e)

for two supported points (xa� za) and (xb� zb), and all e ∈ E ◦
xa�za . This obser-

vation is vacuous if xa = xb for all choices of za and zb, which would be the
case, for example, if X ⊥⊥ Z. However, if such distinct pairs exist, then (5) es-
tablishes the constancy of Ig as a function of x on {xa�xb}. If Z is continuously
distributed and has a nonzero effect on the conditional distribution of X at
any xa, then such an xb can be found arbitrarily close to xa, enabling a straight-
forward proof of the constancy of Ig(x� e) as a function of x and, hence, of
point-identification. This is shown in the Supplemental Material.

If Z is discretely distributed (with finite support), then any distinct points xa
and xb for which FX|Z(xa|za) = FX|Z(xb|zb) will necessarily be far apart. Nev-
ertheless, under certain conditions, it is still possible to show that Ig is constant

13In fact, since every g ∈ G∗ is continuous, it suffices to show this for the interior of the support
of (X�ε).
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FIGURE 1.—The point-identification argument when Z ∈ {0�1} is binary with Xz = [ξ�∞) and
FX|Z(x|1) > FX|Z(x|0) for all x > ξ >−∞.

as a function of x through a sequencing argument. For example, suppose for
the sake of exposition that X = Xz = [ξ�∞) for z ∈ Z = {0�1} with ξ > −∞
and that FX|Z(x|1) > FX|Z(x|0) for all x > ξ. This configuration is depicted in
Figure 1. Also assume that Ex�z = E for all x and z. Consider the mapping

π : (ξ�∞)→ (ξ�∞) : π(x)≡QX|Z
(
FX|Z(x|0)|1

)
�

which satisfies FX|Z(π(x)|1)= FX|Z(x|0) and, hence, Ig(π(x)� e)= Ig(x� e) for
any e ∈ E ◦ by (5). Pick an initial point x0 > ξ and form a recursive sequence
xn+1 = π(xn) for n≥ 0. The sequence is decreasing because

π(x)≡QX|Z
(
FX|Z(x|0)|1

)
<QX|Z

(
FX|Z(x|1)|1

) = x
for x > ξ. Since ξ > −∞, the sequence therefore converges to a limit-
ing point. As X is continuously distributed, this limiting point must satisfy
FX|Z(limxn|1) = limFX|Z(xn+1|1) = limFX|Z(xn|0) = FX|Z(limxn|0). The only
point that satisfies this property (see Figure 1) is ξ, so it must be the case that
xn → ξ. Since Ig(x� e) is a continuous function by Assumption G and because
it remains invariant when switching x to π(x), it follows that

Ig
(
x0� e

) = Ig(x1� e
) = · · · = Ig(xn� e) = Ig(ξ� e)�

Noting that x0 was an arbitrary point, this argument shows that Ig(x� e) =
Ig(ξ� e) = Jg(e) for any x > ξ and e ∈ E ◦. As discussed, this implies that g∗

is point-identified.14

Figure 1 illustrates the main features of this argument. The horizontal ar-
row between (x0� v0) and (x1� v0) represents the equality Ig(x� e)= Ig(π(x)� e)

14The preceding argument establishes point-identification implicitly (vs. constructively) be-
cause it shows that under the given conditions, there can be only one g ∈ G that satisfies
(g−1(X�Y)�V )⊥⊥Z. There is also a constructive proof based on iterating (2) along the sequence
defined by π. This constructive proof is harder to generalize and does not appear to facilitate
estimation, so it is not included here. The details are available from the author on request.
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that is implied by (5). The equality represents the implication of FS that obser-
vations with (X�Z)= (x0�0) and (X�Z)= (x1�1) have the same unobservable
distribution ε|V = v0, even though they have different values ofX . The vertical
arrow between (x1� v0) and (x1� v1) represents the shift in V induced by shifting
Z from 1 back to 0 while holding X = x1. This has no effect on Ig(x1� e) be-
cause Z has no effect on g∗, due to the exclusion restriction in (1). Horizontal
and vertical shifts are repeated until the limiting point ξ is reached. Intuitively,
this procedure establishes an exogenous comparison between treatment levels
x0 and ξ, because each horizontal shift movesX while keeping the conditional
distribution of ε fixed. An exogenous comparison between treatment level x0

and any other treatment level x̃ results from their mutual comparisons with
treatment level ξ.

For an intuitive explanation of the source of point-identification, consider
an experiment that randomly assigns students across various schools to a large
or small class (Z = 0 or 1, respectively).15 The definition of a large or small
class may vary across schools and/or grades so that the distribution of X is
roughly continuous. Partial compliance can arise if some students randomly
assigned to large classes end up attending small classes, for example, because of
parental interference. If the degree of parental interference is correlated with
the outcome Y (e.g., test scores), then X will be dependent with ε. However,
the randomly assigned intent-to-treat Z ∈ {0�1} will still serve as a valid and
relevant instrument for X .

Suppose that the distribution of class size X conditional on intent-to-treat
status Z is given by Figure 1. The model assumptions imply that students
with class size X = x0 in the group assigned to large classes (Z = 0) are un-
observably identical to students with class size X = x1 in the group assigned
to small classes (Z = 1). The connection between these two types of stu-
dents is that they have the same rank in their respective X distributions, that
is, FX|Z(x0|0) = v0 = FX|Z(x1|1). This rank can be interpreted as the latent
propensity (due to parental interference, etc.) of the students for being in a
large-sized class. Since the unobservable characteristics of the two groups are
identical and because Z has no direct effect on Y , the differences in test scores
between these two groups of students must be due solely (that is, causally) to
the change in X from x0 to x1. The class-size production functions are traced
out at all levels by continuing this sequence of binary comparisons from x1 to
x2 and so on, and by varying the initial point of reference, x0.

Essentially the same point-identification argument can be used under much
more general conditions than those discussed in the preceding text and dis-
played visually in Figure 1. In particular, X need not be bounded, Z need not
be binary, and the conditional distribution functions {FX|Z(·|z)}z∈Z can cross
up to a certain extent. The following result proves that g∗ is point-identified

15A well known example of such an experiment is Project STAR; see, for example, Krueger
(1999).
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FIGURE 2.—An example of dividing X into smaller intervals in Theorem 2. Here Z has three
points of support and X †(za� zb)= {ξ1� ξ2}.

under these more general conditions by effectively dividing the support of X
into smaller pieces and then repeating the preceding argument on each piece.
An example of the construction used in the formal proof is illustrated in Fig-
ure 2.

THEOREM 2: Suppose that Z is finite, that dx = 1, and that Xz ≡ supp(X|Z =
z) is an interval for every z ∈ Z . Also assume that Ex�z ≡ supp(ε|X = x�Z = z)
does not depend on x or z. Define X †(za� zb) ≡ {x ∈ Xza ∩ Xzb : FX|Z(x|za) =
FX|Z(x|zb)}. Then g∗ is point-identified on supp(X�ε) if there exist za, zb such
that X †(za� zb) is nonempty and finite.

Theorem 2 requires the existence of instrument values za and zb for which
the distribution functions FX|Z(·|za) and FX|Z(·|zb) cross at least once—but do
not overlap—on the intersection of their supports.16 This assumption is im-
portant and potentially restrictive. It rules out a linear relationship such as
X = πZ + V with Z = {0�1}, π �= 0, and suppV = R, because in this case,
FX|Z(x|1) = FX|Z(x − π|0), so FX|Z(x|1) and FX|Z(x|0) are never equal and,
hence, X †(0�1) is empty. On the other hand, X †(za� zb) will be nonempty if
Xza and Xzb share a lower bound (e.g., 0), which is common in economic appli-
cations.

Imbens and Newey (2009) considered the same model as in this paper, ex-
cept they did not maintain G.S, instead allowing ε to be of arbitrary dimension.
To obtain point-identification of the counterfactual quantity QYx(t) (which
is equal to g∗(x�Qε(t)) under G.S), they require FX|Z(x|Z)|X = x (that is,

16As shown in previous versions of this paper, these conditions can be generalized somewhat
further to allow for the possibility that FX|Z(·|za) and FX|Z(·|zb) overlap on certain nonsingleton
subsets of Xza ∩Xzb , as long as they do not overlap on any given nonsingleton subset of X for all
za� zb ∈ Z . These generalizations complicate the proof of Theorem 1 considerably and seem to
add little empirical relevance.



1194 ALEXANDER TORGOVITSKY

V |X = x) to have support [0�1].17 Intuitively, this type of “large support” con-
dition requires that for a given x of interest, there exist observed instrument
values za and zb such that any agent with za would never attain anything smaller
than x, while any agent with zb would never attain anything larger than x. In
general, this requiresZ to be continuous with support R. This is a strong condi-
tion that is unlikely to be satisfied by the types of instruments used in practice.
In contrast, the conditions given in Theorem 2 (and in the related results in the
Supplemental Material) only require the instrument to have a nonzero effect
on the probability that an agent attains x, for almost every x. This is a require-
ment that can be met by instruments that are binary, discrete, or continuous
but without large support. Since the important difference between the current
model and that of Imbens and Newey (2009) is G.S and the dimension of ε, the
implication is that this assumption about heterogeneity contains a great deal
of identifying content.

D’Haultfœuille and Février (2015) prove a result similar to Theorem 2 us-
ing group theory.18 Their approach requires several additional assumptions,
including the empirically relevant (and typically false) restriction that the sup-
port of (X�Z) be rectangular. The benefit of their approach is the ability to
apply theorems due to Hölder and Denjoy that can be used to establish point-
identification in situations where X †(za� zb) is empty for all za and zb under
an additional high-level “nonperiodicity” condition. Their results are weaker
than Theorem 2 for cases in which X †(za� zb) is nonempty and finite for some
za and zb.

The Supplemental Material contains an extension of Theorem 2 for dx > 1
under stronger conditions. It also contains two examples that discuss the re-
strictiveness of the identifying assumptions for the problem of determining the
causal effect of class size on schooling outcomes.

4. CONCLUSION

This paper has shown that g∗ in the nonseparable specification (1) can be
nonparametrically point-identified using the exogenous variation generated by
an instrument with small support. The instrument can be continuous, but, more
surprisingly, it can also be discrete or even binary. The key to the result is the
imposition of rank invariance on both the outcome and the first stage equa-
tions. Since other point-identification results for nonseparable models with
continuous endogenous variables require continuous instruments (sometime
with large support), the implication is that these assumptions about the di-
mension of heterogeneity have a tremendous amount of identifying content.

17The authors also provide sharp partial identification results when Z does not satisfy this
condition.

18Their sij(x) is essentially π from the special case of Theorem 2. A more complete discussion
of D’Haultfœuille and Février (2015) can be found on my website.
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A practical consequence is that assumptions about the dimension of hetero-
geneity can provide nonparametric point-identification of the distribution of
treatment response for a continuous treatment in a randomized controlled ex-
periment with partial compliance.

APPENDIX: PROOFS

PROOF OF THEOREM 1: If g ∈ G is in the identified set, then Y = g(X�εg)
for some εg with (εg�η) ⊥⊥ Z, and, hence, (g−1(X�Y)�V ) ⊥⊥ Z since εg =
g−1(X�Y) and Vk = Fηk(ηk) for all k (see footnote 10). Conversely, if g ∈ G∗,
then (εg�η) ⊥⊥ Z and Y = g(X�εg) for εg ≡ g−1(X�Y), so that g is in the
identified set. Q.E.D.

PROOF OF THEOREM 2: Suppose that za and zb are such that X †(za� zb)
is nonempty and finite. Then Xza ∩ Xzb is a closed interval with a nonempty
interior, since by definition it contains X †(za� zb), and by assumption both Xza

and Xzb are closed intervals. Let {ξl}Ll=0 denote the unique elements of

X †
(
za� zb

) ∪ {infXza ∩Xzb� supXza ∩Xzb}
arranged in increasing order, where the infimum may be −∞ and the
supremum may be +∞. Then ξ0 = infXza ∩ Xzb , ξL = supXza ∩ Xzb , and
cl

⋃L

l=1(ξ
l−1� ξl) = Xza ∩ Xzb , where cl denotes the closure of a set in the real

numbers. See Figure 2 for an example of these definitions.
Consider the set (ξ0� ξ1), which must have either ξ0 ∈ X †(za� zb) or ξ1 ∈

X †(za� zb), or both, since {ξl}Ll=0 has at least one element from X †(za� zb) and
L≥ 1. The first goal is to show that Ig(x� e) is constant as a function of x over
(ξ0� ξ1). There are four cases to consider, depending on whether ξ0 or ξ1 is
in X †(za� zb) and whether FX|Z(·|zb)− FX|Z(·|za) is strictly positive or strictly
negative over (ξ0� ξ1).19 The following proof is for the case ξ1 ∈X †(za� zb) and
FX|Z(x|zb) > FX|Z(x|za) for all x ∈ (ξ0� ξ1), as depicted in Figure 2. The other
cases follow symmetrically.

Define π(x) ≡QX|Z(FX|Z(x|zb)|za) and for any x0 ∈ (ξ0� ξ1), define the re-
cursive sequence xn+1 = π(xn) for n ≥ 0. Then xn < ξ1 for all n. For other-
wise, there would exist an N such that xN < ξ1 and xN+1 ≥ ξ1. However, since
ξ1 ∈X †(za� zb), this would imply

FX|Z
(
ξ1|zb) = FX|Z

(
ξ1|za) ≤ FX|Z

(
xN+1|za) = FX|Z

(
xN |zb)�

which contradicts the strict monotonicity of FX|Z(·|zb) on (ξ0� ξ1] ⊆ Xzb im-
plied by Assumption C. In addition, xn is increasing in n because π(x) ≡

19The quantity FX|Z(·|zb)−FX|Z(·|za) is continuous by Assumption C and nonzero on (ξ0� ξ1)

by the definition of {ξl}Ll=0.
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QX|Z(FX|Z(x|zb)|za) ≥QX|Z(FX|Z(x|za)|za) = x for x ∈ (ξ0� ξ1) ⊆ X ◦
za . Hence,

limxn exists and, by Assumption C, it satisfies

FX|Z
(
limxn+1|za) = limFX|Z

(
xn+1|za)

= limFX|Z
(
xn|zb) = FX|Z

(
limxn|zb)�

This can only be true if limxn = ξ1, since (ξ0� ξ1]∩X †(za� zb)= {ξ1}. Also, note
that xn ∈X ◦

za ∩X ◦
zb

for all n since xn ∈ (ξ0� ξ1)⊆X ◦
za ∩X ◦

zb
.

The definition and properties of xn with (5) imply that

Ig
(
xn+1� e

) =Dg
(
FX|Z

(
π

(
xn

)|za)� e) =Dg
(
FX|Z

(
xn|zb)� e) = Ig(xn� e)

for all n and any e ∈ E ◦, since E ◦
x�z = E ◦ for all x, z by assumption. Because Ig

is continuous everywhere due to Assumption G,

Ig
(
x0� e

) = Ig(limxn� e
) = Ig(ξ1� e

) ≡ Jg(e)�(6)

Since x0 ∈ (ξ0� ξ1) was arbitrary, (6) shows that Ig(x� e) = Jg(e) for every
x ∈ cl(ξ0� ξ1) and e ∈ E , by continuity. The three other cases reach the same
conclusion through symmetric arguments.20 If L≥ 2, then the same arguments
can be used to show that Ig(x� e) does not vary over x ∈ cl(ξ1� ξ2). Since
cl(ξ0� ξ1)∩cl(ξ1� ξ2)= {ξ1}, it follows that Ig(x� e)= Jg(e) for all x ∈ cl(ξ0� ξ2).
Repeating the argument a finite number of times establishes that Ig(x� e) =
Jg(e) for all x ∈ cl(ξ0� ξL) and all e ∈ E .

Finally, consider an x̃ ∈ X ◦ \ cl(ξ0� ξL) (if any exist). Then there exists a
z̃ ∈ Z such that x̃ ∈ X ◦

z̃ . By the definition of ξ0 and ξL, there either exists
an xa ∈ (ξ0� ξL) such that FX|Z(xa|za) = FX|Z(x̃|̃z) or an xb ∈ (ξ0� ξL) such
that FX|Z(xb|zb) = FX|Z(x̃|̃z). In either case, an application of (5) shows that
Ig(x̃� e) = Jg(e) for all e ∈ E . Thus, for any e ∈ E , Ig(x� e) = Jg(e) is not a
function of x on cl(ξ0� ξL) ∪ (X ◦ \ cl(ξ0� ξL)) = X ◦, hence X , by continu-
ity. As discussed in the main text, this implies that g∗ is point-identified on
supp(X�ε). Q.E.D.
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