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BY ALEXANDER TORGOVITSKY

This supplement contains (i) sufficient conditions for point-identification when
X is a vector and Z is continuously distributed; (ii) sufficient conditions for point-
identification when X is a vector and Z is binary; and (iii) examples that illustrate the
restrictiveness of the identifying assumptions.

S1. SUFFICIENT CONDITIONS FOR POINT-IDENTIFICATION WHEN Z

IS CONTINUOUS

THIS SECTION CONTAINS A PROOF AND DISCUSSION OF THE FOLLOWING RE-
SULT, which establishes point-identification when X is a vector and Z is con-
tinuously distributed. First, I introduce some notation required for the case
where X is a vector. Define FX|Z(x|z)≡ (FX1|Z(x1|z)� � � � �FXdx |Z(xdx |z)) as the
vector of conditional (marginal) ranks of X ∈ R

dx . Then, just as in the scalar
case, Assumptions FS and C imply that if

FX|Z
(
xa|za

) = v = FX|Z
(
xb|zb

)
for xa ∈X ◦

za and xb ∈X ◦
zb
�

then the distributions of ε|X = xa�Z = za and ε|X = xb�Z = zb are the same
and equal to that of ε|V = v. Hence, using the same arguments as in the main
text, one obtains

Ig(x� e)= Dg
(
FX|Z(x|z)� e) for x ∈X ◦

z � e ∈ E ◦
x�z�(S1)

and any g ∈ G∗, where Dg(v� e) is defined as before but with v ∈ R
dx . The anal-

ysis now proceeds from (S1). The aim, as before, is to show that Ig(x� e) is not
a function of x.

THEOREM S1: Suppose that X is convex, Z is a continuously distributed
dz vector, and every element of G is everywhere continuously differentiable. Let
H(x�z) be the dz × dx matrix with (j�k) element ∇zjFXk|Z(xk|z). Then g∗ is
point-identified on supp(X�ε) if for every x in a dense subset Xd of X and every
y ∈ Y◦

x , there exists a z with x ∈X ◦
z and y ∈Y◦

x�z for which ∇xFX|Z(x|z) exists and
H(x�z) exists and has rank dx.

PROOF: Fix an x ∈Xd and e ∈ E ◦
x so that y ≡ g∗(x� e) ∈ Y◦

x and take z in the
statement of the theorem. Then e ∈ E ◦

x�z because y ∈ Y◦
x�z, and so (S1) holds in

a neighborhood of (x� z� e). Differentiating (S1) with respect to zj gives

Hj(x� z)∇vD
g
(
FX|Z(x|z)� e)′ = ∇zj I

g(x� e) = 0�(S2)
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where Hj(x� z) is the jth row of H(x�z) and ∇vD
g(v� e)′ is a dx column vector.1

Stacking (S2) across j gives

H(x�z)∇vD
g
(
FX|Z(x|z)� e)′ = 0dz �

Because H(x�z) has full rank, this implies ∇vD
g(FX|Z(x|z)� e)′ = 0dx . Now dif-

ferentiate (S1) with respect to xk at (x� z� e). This yields

fXk|Z(xk|z)∇vkD
g
(
FX|Z(x|z)� e) = 0 = ∇xkI

g(x� e)

for each k. Hence ∇xI
g(x� e)= 0dx for all x ∈X , because ∇xI

g(·� e) is continu-
ous and Xd is a dense subset of X .2 Since X is convex, this implies that Ig(x� e)
is constant in x, that is, Ig(x� e) = Jg(e) for some function Jg, every x ∈X , and
every e ∈ E ◦

x (hence Ex, by continuity); see, for example, Theorem 9.19 of Rudin
(1976).3 As discussed in the main text, this implies that g∗ is point-identified on
supp(X�ε). Q.E.D.

The conditions on the dependence between X and Z in Theorem S1 are
weak. When X is scalar, they are similar to the local relevance condition used
by Chesher (2003) to point-identify ∇xg

∗(QX|Z(v|z)�Qε|η(t|Qη(v))) under lo-
cal restrictions.4 In contrast to Chesher’s result, here relevance is assumed to
hold globally (for a dense subset of X ) to point-identify g∗(x� e) at any pre-
specified x and e. For vector X , the conditions are a nonlinear generalization
of the classical relevance (or rank) condition in the linear model.5 The usual
order condition (dz ≥ dx) is necessary for H to have full rank.

S2. SUFFICIENT CONDITIONS FOR POINT-IDENTIFICATION WHEN X IS
A VECTOR AND Z IS BINARY

This section contains a proof and discussion of the following result, which
establishes point-identification when X is a vector and Z is binary.

1Assumptions C and G imply that Dg(·� e) is differentiable at FX|Z(x|z) when g and g∗ are
everywhere continuously differentiable.

2Assumption G implies that Ig(·� e) is everywhere continuously differentiable if g and g∗ are.
3The assumption that X is convex could be relaxed to the assumption that it is a closed region

Olmsted (1961, p. 280).
4Chesher also allows η to enter g∗ directly, so actually he point-identifies

∇xg
∗(QX|Z(v|z)�Qε|η

(
t|Qη(v)

)
�Qη(v)

)
�

A concise treatment of Chesher’s result can be found in Section 3.1 of Chesher (2007).
5To see this, suppose that X = Γ Z+η for a dx×dz matrix, Γ . By FS.E, FXk |Z(xk|z)= Fηk

(xk−
Γkz), where Γk is the kth row of Γ . Differentiating yields H(x�z) = Γ ′B(x�z) for a dx × dx

diagonal matrix B(x�z) with entries −fηk
(xk −Γkz). The diagonal matrix B(x�z) has rank dx for

x ∈ X ◦
z , so H(x�z) has rank dx only if Γ has rank dx.
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THEOREM S2: Suppose that X = Xz = Xz�1 × · · · × Xz�dx for z ∈ Z = {0�1},
where Xz�k = [xk�xk] is a compact interval for each k and z. Also assume that Ex�z

does not depend on x or z. Suppose that the sets X †
k ≡ {xk ∈ Xk : FXk|Z(xk|0) =

FXk|Z(xk|1)} are finite for each k. Then g∗ is point-identified on supp(X�ε).

Theorem S2 uses the strong assumption that (X�Z) has rectangular support
and so may be of less practical interest. However, Theorem S2 is still inter-
esting from a theoretical standpoint, because it demonstrates a case in which
the traditional order condition (dz ≥ dx) is not needed for point-identification.
The main assumption in Theorem S2 is that the sets X †

k are finite, as in The-
orem 2. (The nonemptyness assumed in Theorem 2 is already implied here by
the conditions on the joint support of (X�Z).)

PROOF OF THEOREM S2: To ease notation, let Xk ≡Xz�k, which by assump-
tion does not depend on z. For each k = 1� � � � � dx, let {ξl

k}Lk
l=0 denote the el-

ements of the finite set X †
k arranged to be increasing. Since xk�xk ∈ X †

k and
Xk is an interval, it follows that Lk ≥ 1, ξ0

k = xk, ξLk
k = xk, and Xk = ⋃Lk−1

l=0 X l
k,

with X l
k ≡ [ξl

k� ξ
l+1
k ]. Given that X = X1 × · · · × Xdx , this construction divides

X into nonempty cells each contained in X . Let J denote the collection of all
dx-tuples of integers drawn from

⊗dx
k=1{0� � � � �Lk − 1} and j = (j1� � � � � jdx) an

element of J . Then X = ⋃
j∈J X j , where X j ≡ ⊗dx

k=1 X
jk
k ⊆ X is an individual

cell of X . Also, define X ◦
k ≡ (xk�xk), X l�◦

k ≡ (ξl
k� ξ

l+1
k ), and X j�◦ ≡ ⊗dx

k=1 X
jk�◦
k .

For each k, define

πk(xk)≡QXk|Z
(
FXk|Z(xk|1)|0

)

and let π(x) ≡ (π1(x1)� � � � �πdx(xdx)). Fix a j ∈J and let x0 be an arbitrary el-
ement of X j�◦. Consider the recursive sequence xn+1 = π(xn) for n ≥ 0. The
kth component of this sequence is contained in X jk�◦

k ≡ (ξ
jk
k � ξ

jk+1
k ). Other-

wise, there would exist an N such that xN
k ∈X jk�◦

k but xN+1
k /∈X jk�◦

k , say, because
xN+1
k ≤ ξ

jk
k . Then

FXk|Z
(
ξ
jk
k |1) = FXk|Z

(
ξ
jk
k |0) ≥ FXk|Z

(
xN+1
k |0) = FXk|Z

(
xN
k |1)

�

which contradicts xN
k > ξk

jk
under Assumption C. A symmetric argument pro-

vides a contradiction if xN+1
k ≥ ξ

jk+1
k . Hence xn

k ∈ X jk�◦
k for each k and so

xn ∈X j�◦ ⊆X ◦ for each n.
Let

σk(xk) ≡ sgn
[
FXk|Z(xk|1)− FXk|Z(xk|0)

]
�
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Then for each k, σk(xk) is either 1 or −1 for all xk ∈X jk�◦
k because FXk|Z(·|1)−

FXk|Z(·|0) is continuous by Assumption C and, by construction, nonzero
on X jk�◦

k . If σk(x
0
k)= −1, then xn

k is decreasing in n because

πk(xk)=QXk|Z
(
FXk|Z(xk|1)|0

)
<QXk|Z

(
FXk|Z(xk|0)|0

) = xk

for any xk ∈ X jk�◦
k and xn

k ∈ X jk�◦
k for all n. If σk(x

0
k) = 1, then xn

k is increasing
by a symmetric argument. In either case, xn

k converges because Xk is compact.
Furthermore, by Assumption C,

FXk|Z
(
limxn

k|0
) = limFXk|Z

(
πk

(
xn
k

)|0)

= limFXk|Z
(
xn
k|1

) = FXk|Z
(
limxn

k|1
)
�

so limxn
k ∈ X †

k for each k. Since xn
k ∈ X jk�◦

k ≡ (ξ
jk
k � ξ

jk+1
k ) for all n, this implies

that limxn
k = ξ

jk
k if σk(x

0
k) = −1 and limxn

k = ξ
jk+1
k if σk(x

0
k) = 1. Notice that

this limiting point may depend on j, but it does not depend on x0 ∈X j�◦, since
σk is constant on X jk�◦

k .
The definition and properties of xn together with (S1) imply that

Ig
(
xn+1� e

) =Dg
(
FX|Z

(
π

(
xn

)|0)
� e

) = Dg
(
FX|Z

(
xn|1)

� e
) = Ig

(
xn� e

)

for all n and any e ∈ E ◦, since E ◦
x�z = E ◦ for all x, z by assumption. As

noted in the main text, Ig is continuous everywhere due to Assumption G, so
Ig(x0� e)= Ig(limxn� e)≡ Jg(e). Since x0 was an arbitrary element of X j�◦, and
limxn depends only on j and not on x0 ∈ X j�◦, Ig(x� e) = Ig(limxn� e) ≡ Jg(e)
for all x ∈ X j�◦. By the continuity of Ig, it follows that Ig(x� e) = Jg(e) for all
x ∈X j ≡ clX j�◦ and e ∈ E .

The preceding argument was for an arbitrary cell j ∈J . The conclusion that
Ig(x� e) does not vary in x over X j also applies to any cell X j′ that is adja-
cent to X j . Since X j′ and X j share a boundary, their intersection is nonempty.
Thus, Ig(x� e) = Jg(e) for all x ∈ X j ∪ X j′ as well. Repeating this argument a
finite number of times shows that Ig(x� e)= Jg(e) for all x ∈X = ⋃

j∈J X j and
e ∈ E . As discussed in the main text, this implies that g∗ is point-identified on
supp(X�ε). Q.E.D.

S3. EXAMPLE: THE CAUSAL EFFECT OF CLASS SIZE ON SCHOOLING OUTCOMES

In this section, I illustrate the restrictiveness of the identifying assumptions
in the context of determining the causal effect of class size X on a measure
of schooling outcomes Y . In this example, W stands for observable covariates
including school characteristics and socioeconomic variables. The unobserv-
able ε aggregates the many other factors involved in determining schooling
outcomes Y , including parental involvement, unobserved family background
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characteristics, and preferences for class size that lead to sorting. The inter-
pretation of G.S in terms of rank invariance was given in Section 1. By itself,
G.S has no observable content.6 It would fail, for example, if the marginal ef-
fect of class size on outcomes is controlled by a different unobservable than the
one explaining differences in performance for a fixed class size (say 20), for ex-
ample, if Y = ε + ε̃(X − 20) for distinct unobservables ε and ε̃. Assumption
FS depends on the particular instrument used. Consider two instruments from
the literature.

EXAMPLE 1: Hoxby (2000) constructs an instrument Z from exogenous fluc-
tuations in the number of enrolled students caused by changes in the timing of
births around the calendar year.7 Let s(W � η̃) represent the number of stu-
dents who would be enrolled if the timing of births were nonvarying, where η̃
is some (possibly multidimensional) random vector that may be arbitrarily de-
pendent with ε. Let Z represent proportional exogenous fluctuations in enroll-
ment (i.e., Z takes values around 1 and Z > 0) so that the actual number of en-
rolled students is s(W �Z� η̃) =Zs(W � η̃). Also, suppose that c(W � η̃) denotes
the number of classes that the school would maintain in a baseline year and let
the actual number of classes be given by c(W �Z� η̃)= d(W �Z)c(W � η̃), where
d > 0 and d(W �1)= 1. Assuming that classes are split into equal sizes,

X = s(W �Z� η̃)

c(W �Z� η̃)
= Z

d(W �Z)

s(W � η̃)

c(W � η̃)

≡ h1(W �Z)h2(W � η̃)≡ h1(W �Z)η�

where h1(W �Z) ≡ Z/d(W �Z) > 0 and η ≡ h2(W � η̃) so that FS.S is satisfied.
Hoxby argues that Z is conditionally exogenous, so if one agrees with her ar-
gument, then (η̃� ε) ⊥⊥ Z|W , which implies also (η�ε) ⊥⊥Z|W and, hence, that
FS.E holds. Theorem S1 establishes point-identification of g∗ if Z has some
marginal effect on class sizes (conditional on W ) for all class sizes under con-
sideration. This is a weak assumption that can be checked in the data. As-
sumption FS.S may fail if d also depends on η̃, so that the way a school district
changes class size in response to birth fluctuations is influenced by factors af-
fecting the number of students.

EXAMPLE 2: Feinstein and Symons (1999) use geographic indicator vari-
ables for Z. Variation in these indicators corresponds to different local au-
thorities (a unit of local government in England), which have different policies
on class size. The authors cite work on the determinants of migration to argue
that geographic location at the local authority level is exogenous to schooling

6Although, as shown in Theorem 1, the model is testable in its entirety.
7The exact construction of Hoxby’s instrument is more subtle, but it is not important for the

current discussion.
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outcomes after conditioning on measures of social class, parents’ education,
and parental interest. If one agrees with their argument, then FS.E holds when
W is a set of controls containing these variables. Consider a school in local
authority A that has relatively small class size compared to other schools in
A with similar socioeconomic factors W . Assumption FS.S requires that were
this school to be counterfactually located in local authority B, then it would
also have a small class size relative to other W -comparable schools in B. The-
orem 2 establishes point-identification of g∗ if variation in local authority is
correlated with the realized, absolute level of class size in a regular way.
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