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This paper considers the problem of testing whether there exists a non-negative solu-
tion to a possibly under-determined system of linear equations with known coefficients.
This hypothesis testing problem arises naturally in a number of settings, including ran-
dom coefficient, treatment effect, and discrete choice models, as well as a class of linear
programming problems. As a first contribution, we obtain a novel geometric character-
ization of the null hypothesis in terms of identified parameters satisfying an infinite
set of inequality restrictions. Using this characterization, we devise a test that requires
solving only linear programs for its implementation, and thus remains computationally
feasible in the high-dimensional applications that motivate our analysis. The asymp-
totic size of the proposed test is shown to equal at most the nominal level uniformly
over a large class of distributions that permits the number of linear equations to grow
with the sample size.

KEYWORDS: Linear programming, linear inequalities, moment inequalities, random
coefficients, partial identification, exchangeable bootstrap, uniform inference.

1. INTRODUCTION

GIVEN AN INDEPENDENT AND IDENTICALLY DISTRIBUTED (i.i.d.) sample {Zi}ni=1 with Zi
distributed according to P ∈ P, this paper studies the hypothesis testing problem

H0 : P ∈ P0 vs. H1 : P ∈ P \ P0� (1)

where P is a “large” set of distributions satisfying conditions described below and P0 ≡
{P ∈ P : β(P) =Ax for some x≥ 0}. Here, “x≥ 0” signifies that all coordinates of x ∈ Rd

are non-negative, β(P) ∈ Rp denotes an unknown parameter, and the coefficients of the
linear system are known in that A is known.

As we discuss in Section 2, the described hypothesis testing problem plays a central
role in a surprisingly varied array of empirical settings. Tests of (1) can be used for ob-
taining asymptotically valid confidence regions for counterfactual broadband demand in
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the analysis of Nevo, Turner, and Williams (2016), and for conducting inference on the
fraction of employers engaging in discrimination in the audit study of Kline and Walters
(2021). Within the treatment effects literature, tests of (1) arise naturally when examin-
ing the testable implications of the model proposed by Imbens and Angrist (1994) and
when conducting inference on partially identified parameters, such as in the studies by
Kline and Walters (2016) and Kamat (2019) of the Head Start program, or the analysis
of unemployment state dependence by Torgovitsky (2019). The null hypothesis in (1) has
also been shown by Kitamura and Stoye (2018) to play a central role in testing whether
a cross-sectional sample is rationalizable by a random utility model; see Manski (2014),
Deb, Kitamura, Kim-Ho Quah, and Stoye (2017), and Lazzati, Quah, and Shirai (2018)
for related examples.

Tests of the null hypothesis in (1) can also be used to test whether a class of linear pro-
grams is feasible or, through test inversion, to obtain confidence regions for the optimal
value of these linear programs. More precisely, our results are applicable to any linear
programs whose standard form has the structure

min
x∈Rd+

c′x s.t. Ax= β(P)

for known A and c. We emphasize that linear (in)equality constraints on x and/or β(P)
can be incorporated by using slack variables appropriately. This connection to linear pro-
gramming enables us to conduct inference in the competing risks model of Honoré and
Lleras-Muney (2006), the empirical study of the California Affordable Care Act market-
place by Tebaldi, Torgovitsky, and Yang (2019), and the dynamic discrete choice model of
Honoré and Tamer (2006).

The null hypothesis in (1) can equivalently be represented as a system of linear inequal-
ities in β(P) through, for example, Fourier–Motzkin elimination. Such a representation
would enable us to test (1) by relying on approaches devised by the literature on testing
for the validity of moment inequalities; see Canay and Shaikh (2017) for a review. Un-
fortunately, in the empirical applications that motivate us, the dimensions p and, in par-
ticular, d are large, making obtaining such a representation computationally infeasible
(Kitamura and Stoye (2018)). We proceed instead by obtaining a novel geometric charac-
terization of the null hypothesis that forms the cornerstone of our approach to inference.
Specifically, we show that the null hypothesis in (1) holds if and only if: (i) there is an
x ∈ Rd (not necessarily positive) solving Ax= β(P); and (ii) the minimum norm solution
to Ax= β(P), denoted x�(P), forms an obtuse angle with any vector in the intersection
of the row space of A and the negative orthant in Rd . Condition (ii) can be represented
as a finite number of linear inequalities in x�(P), though enumerating such inequalities
can again be computationally prohibitive in applications with large p and/or d. We show
that such enumeration is unnecessary: One can instead evaluate whether condition (ii)
holds by computing the largest inner product between x�(P) and the vectors in the inter-
section of the row space of A and the negative orthant—a task that may be accomplished
by solving a linear program.

Our geometric characterization can be employed to construct a variety of different
tests. Guided by computational and statistical reliability when p and/or d are large,
we focus on a test that can be computed through linear programming. Our test statis-
tic employs a linear program to compute the largest violation of the “inequality” re-
strictions in our geometric characterization of the null hypothesis. We obtain a critical
value through a bootstrap procedure that requires solving one linear program per boot-
strap iteration. The resulting test is similar in spirit to generalized moment selection
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in incorporating information on whether inequalities are “slack” or “close” to binding
(Andrews and Soares (2010)). An R package for implementing our test is available at
https://github.com/conroylau/lpinfer. In Section 4, we additionally describe variants of
this test that may be less computationally tractable, but may be attractive in some low-
dimensional settings in terms of their power properties. We emphasize, however, that
none of these tests are motivated by any specific optimality criterion.

Besides delivering computational tractability, the linear programming structure in our
test enables us to establish the consistency of our asymptotic approximations under the
requirement that p2/n tends to zero (up to logs). Leveraging the consistency of such
approximations to establish the asymptotic validity of our test further requires us to verify
an anti-concentration condition at a particular quantile (Chernozhukov, Chetverikov, and
Kato (2014)). We show that the required anti-concentration property indeed holds under
a condition that relates the allowed rate of growth of p relative to n to the matrix A. This
result enables us to derive a sufficient, but more stringent, condition on the rate of growth
of p relative to n that delivers anti-concentration universally in A. Furthermore, if, as in
much of the related literature, p is fixed with n, then our results imply that our test is
asymptotically valid under “weak” regularity conditions on P.

Our paper is related to important work by Kitamura and Stoye (2018), who studied (1)
in the context of testing the validity of a random utility model. Their inference procedure,
however, relies on conditions on A that can be violated in the broader set of applica-
tions that motivate us; see Section 2. Andrews, Roth, and Pakes (2019) and Cox and Shi
(2019) proposed methods for sub-vector inference in certain conditional moment inequal-
ity models that can be related to (1). However, applying their tests, which were designed
with a different problem in mind, to (1) can require non-trivial theoretical extensions or
be computationally challenging—in particular when, as in most of our examples, β(P)
has non-zero known coordinates and/or d and p are large. On the other hand, we show in
Section 4.4.2 that an important insight in Andrews, Roth, and Pakes (2019) allows us to
adapt our methodology to conduct sub-vector inference in a class of conditional moment
inequality models. Our analysis is also conceptually related to work on sub-vector infer-
ence in models involving moment inequalities and to a literature on shape restrictions;
see, for example, Romano and Shaikh (2008), Bugni, Canay, and Shi (2017), Kaido, Moli-
nari, and Stoye (2019), Gandhi, Lu, and Shi (2019), Chernozhukov, Newey, and Santos
(2015), Zhu (2019), and Fang and Seo (2021). While these procedures are designed for
general problems that do not possess the specific structure in (1), they are, as a result, less
computationally tractable and/or rely on more demanding and high-level conditions than
the ones we employ.

2. APPLICATIONS

In order to fix ideas, we first discuss a number of empirical settings in which the hypoth-
esis testing problem described in (1) arises naturally.

EXAMPLE 2.1—Dynamic Programming: Building on Fox, Kim, Ryan, and Bajari
(2011), Nevo, Turner, and Williams (2016) estimated a model for residential broadband
demand in which there are h ∈ {1� � � � � d} types of consumers that select among plans
k ∈{1� � � � �K}. Each plan has fee Fk, speed sk, usage allowance C̄k, and overage price pk.
At day t, a type h consumer with plan k has utility over ct and numeraire yt equal to

uh(ct� yt� vt;k) = vt
(
c

1−ζh
t

1 − ζh
)

− ct
(
κ1h + κ2h

log(sk)

)
+ yt�

https://github.com/conroylau/lpinfer
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where vt is an i.i.d. shock following a truncated log-normal distribution with mean μh and
variance σ2

h . The problem faced by a type h consumer with plan k is

max
c1�����cT

T∑
t=1

E
[
uh(ct� yt� vt;k)

]
s.t. Fk + pk max

{
T∑
t=1

ct − C̄k�0

}
+

T∑
t=1

yt ≤ I� (2)

where the expectation is over vt and total wealth I is assumed to be large enough to
not restrict usage. From (2), it follows that the distribution of observed plan choice
and daily usage, denoted by Z ∈ RT+1, for a consumer of type h is characterized by
θh ≡ (ζh�κ1h�κ2h�μh�σh). Hence, for any function m of Z, we obtain the restriction

EP
[
m(Z)

]=
d∑
h=1

Eθh
[
m(Z)

]
xh�

whereEP andEθh denote expectations under the distribution P ofZ and under θh, respec-
tively, and xh is the unknown proportion of each type in the population. After specifying
d = 16�807 different types and p= 120�000 moments, Nevo, Turner, and Williams (2016)
estimated x ≡ (x1� � � � � xd) by GMM while constraining x to be a probability measure.
The authors then employed the constrained GMM estimator for x and the block boot-
strap to conduct inference on counterfactual demand, which equals

∑d

h=1 a(θh)xh for a
known function a. We note, however, that the results in Fang and Santos (2018) imply the
bootstrap is inconsistent for this problem—the bootstrap fails because the restriction x≥ 0
causes the GMM estimator to not be a “smooth” function of the moments. In contrast,
the results in this paper enable us to conduct asymptotically valid inference. For instance,
by setting

β(P) ≡
⎛
⎝EP

[
m(Z)

]
1
γ

⎞
⎠ � A≡

⎛
⎝Eθ1

[
m(Z)

] · · · Eθd
[
m(Z)

]
1 · · · 1

a(θ1) · · · a(θd)

⎞
⎠ � (3)

we may obtain a confidence region for counterfactual demand through test inversion (in
γ) of the null hypothesis in (1). Other applications of the approach in Nevo, Turner, and
Williams (2016) include Blundell, Gowrisankaran, and Langer (2018) and Illanes and
Padi (2019).

EXAMPLE 2.2—Treatment Effects: Consider the heterogeneous treatment effects
model of Imbens and Angrist (1994) in which an instrument W ∈ {0�1}, potential treat-
ments (D(0)�D(1)), and potential outcomes (Y (0)�Y (1)) satisfy(

D(0)�D(1)�Y (0)�Y (1)
)⊥⊥W and D(1) ≥D(0) a.s. (4)

The requirements in (4) yield testable restrictions on the distributions of observables
(Y�D�W ) ≡ (Y (D)�D(W )�W ) (Balke and Pearl (1994), Angrist and Imbens (1995),
Kitagawa (2015)) that may be mapped into (1). Specifically, assuming for simplicity that
Y has discrete support K, and letting jc ≡ 1 − j, we note (4) yields

P(Y ∈ B�D= j|W = 0) =
∑

l∈{0�1}:l≥j

∑
(m�k)∈B×K

P
((
Y (j)�Y

(
jc
)
�D(0)�D(1)

)= (m�k� j� l)
)
�
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P(Y ∈ B�D= j|W = 1) =
∑

l∈{0�1}�l≤j

∑
(m�k)∈B×K

P
((
Y (j)�Y

(
jc
)
�D(0)�D(1)

)= (m�k� l� j)
)
�

1 =
∑

l�j∈{0�1}:l≥j

∑
m�k∈K

P
((
Y (0)�Y (1)�D(0)�D(1)

)= (m�k� j� l)
)
�

for any set B. These restrictions may be written as β(P) =Ax with x ≥ 0 denoting the
distribution of (Y (0)�Y (1)�D(0)�D(1)). ForK the number of support points ofY , in this
problem d = 3K2 and p is as large as 4K + 1. For instance, in estimating the distribution
of compliers in Angrist and Krueger (1991), Imbens and Rubin (1997) had let W indicate
fourth quarter birth and discretized log weekly earning into 55 bins, yielding d = 9075
and p = 221. As in Example 2.1, we may also construct confidence regions for linear
functionals of the distribution of (Y (0)�Y (1)�D(0)�D(1)) such as the average treatment
effect (Balke and Pearl (1997), Lafférs (2019), Machado, Shaikh, and Vytlacil (2019),
Kamat (2019), Bai, Shaikh, and Vytlacil (2020)).

EXAMPLE 2.3—Duration Models: In studying the efficacy of President Nixon’s war on
cancer, Honoré and Lleras-Muney (2006) employed the competing risks model

(
T ∗� I

)=
{(

min{S1� S2}�arg min{S1� S2}
)

if W = 0�(
min{αS1�βS2}�arg min{αS1�βS2}

)
if W = 1�

where (S1� S2) represent duration until death due to cancer and cardiovascular disease,
W ⊥⊥ (S1� S2) indicates the implementation of the war on cancer, and (α�β) are unknown
parameters. The observed variables are (T� I�W ), where T = tk if tk ≤ T ∗ < tk+1 for k=
1� � � � �M and tM+1 = ∞, reflecting that data sources often contain interval observations
of duration. While (α�β) is partially identified, Honoré and Lleras-Muney (2006) showed
there are known finite sets S(α�β) and Sk�i�w(α�β) ⊆ S(α�β) such that (α�β) belongs to
the identified set if and only if∑

(s1�s2)∈Sk�i�w (α�β)

f (s1� s2) = P(T = tk� I = i|W =w)�

∑
(s1�s2)∈S(α�β)

f (s1� s2) = 1� and f (s1� s2) ≥ 0 for all (s1� s2) ∈ S(α�β)�
(5)

for some distribution f on S(α�β), and where the first equality must hold for all 1 ≤
k ≤M , i ∈ {1�2}, and w ∈ {0�1}. In the context of the empirical analysis of Honoré and
Lleras-Muney (2006), (5) yields p = 141 and d = 4900. It follows from (5) that testing
whether a particular (α�β) belongs to the identified set is a special case of (1). Through
test inversion, the results in this paper therefore allow us to construct a confidence region
for the identified set that satisfies the coverage requirement proposed by Imbens and
Manski (2004). Similarly, our results also apply to the dynamic discrete choice model of
Honoré and Tamer (2006).

EXAMPLE 2.4—Discrete Choice: In their study of demand for health insurance in
the California Affordable Care Act marketplace (Covered California), Tebaldi, Torgov-
itsky, and Yang (2019) assumed a consumer’s utility for plan j equals Vj − pj , where
V = (V1� � � � � VJ) is an unobserved vector of valuations and p ≡ (p1� � � � �pJ) denotes post-
subsidy prices. In Covered California, post-subsidy prices satisfy p = π(C) for some
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known function π and C a (discrete-valued) vector of individual characteristics. By de-
composing C into subvectors (W�S) and assuming V is independent of S conditional on
W , Tebaldi, Torgovitsky, and Yang (2019) showed there is a finite partition V of RJ and
known sets Vj(p) such that observed plan choice Y satisfies

P(Y = j|C = c) =
∑

V∈V:V⊆Vj (π(c))

∫
V
fV|W (v|w) dv (6)

for fV|W the density of V conditional onW . Moreover, counterfactuals such as the change
in consumer surplus due to a change in subsidies can be written as

∑
V∈V

a(V)
∫
V
fV|W (v|w) dv (7)

for known function a. Arguing as in Example 2.1, it then follows from (6) and (7) that
confidence regions for the desired counterfactuals may be obtained through test inversion
of hypotheses as in (1). In Tebaldi, Torgovitsky, and Yang (2019), the corresponding matrix
A has dimensions as high as 253 × 15�000.

EXAMPLE 2.5—Revealed Preferences: Building on McFadden and Richter (1990), Ki-
tamura and Stoye (2018) developed a nonparametric specification test for a random utility
model (RUM). In the simplest setting they studied, Kitamura and Stoye (2018) supposed
there are K goods and, for each individual, we observe the prices p ∈ RK they faced, their
budget set B(p) ≡ {y ∈ RK

+ : p′y = 1}, and their chosen consumption bundle Y ∈ B(p).
Under the assumption that p has discrete support {p1� � � � �pJ}, the authors built a finite
partition V of

⋃J

j=1 B(pj) which they used to show the distribution P of (Y�p) is compat-
ible with RUM if and only if β(P) =Ax for some x ≥ 0; here, each coordinate of β(P)
equals P(Y ∈ V|p = pj) for some V ∈ V, each column of A represents a rationalizable
non-stochastic demand system, and x represents a vector of probabilities. Kitamura and
Stoye (2018) proposed a test for (1) and implemented it using the U.K. Family Expendi-
ture Survey—an application in which p and d can be as large as 79 and 313,440. We note,
however, that the arguments establishing the asymptotic validity of their test rely on a key
restriction onA: that (a1 −a0)′(a2 −a0) ≥ 0 for any distinct column vectors (a0� a1� a2) of
A. While this restriction is satisfied in the application that motivates Kitamura and Stoye
(2018) and related work (Manski (2014), Deb et al. (2017), Lazzati, Quah, and Shirai
(2018)), it can fail in our previous examples.

3. GEOMETRY OF THE NULL HYPOTHESIS

In this section, we obtain a geometric characterization of the condition that a β ∈ Rp

satisfies β =Ax for some x ≥ 0. This characterization yields an alternative formulation
of the null hypothesis that guides the construction of our test.

We viewA as a linear map from Rd to Rp, with rangeR≡{b ∈ Rp : b=Ax for some x ∈
Rd} and null space N ≡ {x ∈ Rd :Ax= 0}. It will also be helpful to introduce the ortho-
complement to N , which we denote by N⊥ ≡ {y ∈ Rd : 〈y�x〉 = 0 for all x ∈ N}, where
〈v�u〉 ≡ v′u for any vectors v, u. The orthocomplement N⊥ satisfies the following well-
known property.

LEMMA 3.1: If β ∈R, then there is a unique x� ∈N⊥ satisfying β=Ax�.
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Provided β ∈ R, Lemma 3.1 and the orthogonality of N and N⊥ imply that the set of
solutions to Ax = β is given by x� + N . Hence, the restriction that β = Ax for some
x ≥ 0 is equivalent to two conditions: (i) β ∈ R and (ii) x� + N intersects the positive
orthant, Rd

+; that is, (i) ensures some solution to the equation Ax = β exists, while (ii)
ensures a (weakly) positive solution exists. Our next result shows these requirements are
equivalent to a system of linear equalities (in Rp) and inequalities (in Rd) whose validity
is computationally easier to verify.

THEOREM 3.1: For any β ∈ Rp, there exists an x≥ 0 satisfyingAx= β if and only if β ∈R
and 〈s�x�〉 ≤ 0 for all s ∈N⊥ ∩ Rd

−.

The proof of Theorem 3.1 is based on Farkas’s lemma, which can be viewed as an impli-
cation of the separating hyperplane theorem. Observe that Ax= β for some x≥ 0 if and
only if there does not exist a hyperplane that separates β from the conic hull generated
by the columns of A (i.e., {Ax : x≥ 0}). Theorem 3.1 translates this requirement (in Rp)
into the requirement that there does not exist a vector s in the range of A′ (equivalently,
N⊥) that separates x� from the positive orthant (in Rd).

4. THE TEST

The results in Section 3 imply that the null hypothesis in (1) holds if and only ifβ(P) ∈R
and the unique element x�(P) ∈N⊥ solving β(P) =A(x�(P)) satisfies 〈s�x�(P)〉 ≤ 0 for
all s ∈N⊥ ∩ Rd

−. Based on this characterization, we next develop a test that is computa-
tionally feasible when p and/or d are large.

4.1. The Test Statistic

In what follows, we let A† denote the Moore–Penrose pseudoinverse of A, which is a
d×p matrix implicitly defined for any b ∈ Rp through the optimization problem

A†b≡ arg min
x∈Rd

‖x‖2 s.t. x ∈ arg min
x̃∈Rd

‖Ax̃− b‖2;

that is, A†b is the minimum norm minimizer of ‖Ax − b‖2 over x, where ‖v‖q ≡
(
∑k

i=1|vi|q)1/q for any vector v ≡ (v1� � � � � vk)′ and 1 ≤ q ≤ ∞. Importantly, A†b is de-
fined even if there is no x ∈ Rd satisfying Ax= b or the solution is not unique. It is also
helpful to note that A† is a map from Rp onto N⊥ (Luenberger (1969)).

We assume that there is an estimator β̂n of β(P) that is constructed from an i.i.d. sam-
ple {Zi}ni=1 with Zi ∈ Z distributed according to P ∈ P. Since β(P) ∈ R under the null
hypothesis, Lemma 3.1 implies x�(P) =A†β(P) for any P ∈ P0. This observation suggests
employing x̂�n =A†β̂n as an estimator for x�(P), which we focus on for ease of exposition.
We note, however, that when d < p, the analysis in Chen and Santos (2018) implies em-
ploying such an estimator may be inefficient. In such instances, it may be preferable to
implement our test with alternative minimum distance estimators of x̂�n; see Fang, Santos,
Shaikh, and Torgovitsky (2021) for details.

To devise a test based on Theorem 3.1, we first note that since the range of A† equals
N⊥, the condition 〈s�x�(P)〉 ≤ 0 for all s ∈N⊥ ∩ Rd

− is equivalent to〈
A†s�x�(P)

〉≤ 0 for all s ∈ Rp s.t. A†s ≤ 0 (in Rd)� (8)



306 FANG, SANTOS, SHAIKH, AND TORGOVITSKY

Therefore, to detect violations of condition (8), we introduce the statistic

sup
s∈V i

√
n
〈
A†s� x̂�n

〉
where V i ≡ {

s ∈ Rp :A†s ≤ 0 and
∥∥i

(
AA′)†

s
∥∥

1
≤ 1

}
� (9)

Here, i is a p×p symmetric matrix and the “i” superscript alludes to the relation to the
“inequality” condition in Theorem 3.1 (i.e., (8)). The inclusion of a norm constraint in V i

ensures the statistic in (9) is not infinite with positive probability. The introduction of i

in (9) provides flexibility in the family of test statistics we examine. For ease of exposition,
we focus on the case in which i is not stochastic. Our results can be extended to allow i

to depend on the data, as is needed to let i be an estimator of the asymptotic standard
deviation of

√
nAx̂�n—a choice that we employ in simulations because it ensures (9) is

scale-invariant. We state the additional assumptions required for such an extension at the
start of the Appendix and refer the reader to Fang et al. (2021) for the relevant analysis.

By Theorem 3.1, any P ∈ P0 must satisfyβ(P) ∈R in addition to (8). To detect violations
of this second requirement, we introduce the statistic

sup
s∈Ve

√
n
〈
s� β̂n −Ax̂�n

〉
where Ve ≡ {

s ∈ Rp : ∥∥es
∥∥

1
≤ 1

}
� (10)

Here,e is a p×p symmetric matrix and the “e” superscript alludes to the relation to the
“equality” condition in Theorem 3.1 (i.e., β(P) ∈ R). In particular, note that if e = Ip,
then (10) equals

√
n‖β̂n −Ax̂�n‖∞. For ease of exposition, we again assume e to be non-

stochastic. In applications in which d ≥ p and A is full rank, the requirement β(P) ∈R is
automatically satisfied and (10) is identically zero.

For our test statistic Tn, we use the maximum of the statistics in (9) and (10):

Tn ≡ max
{

sup
s∈Ve

√
n
〈
s� β̂n −Ax̂�n

〉
� sup
s∈V i

√
n
〈
A†s� x̂�n

〉}
� (11)

which can be computed through linear programming. A variety of alternative test statistics
can, of course, be motivated by Theorem 3.1. A couple of remarks are therefore in order
as to why our interest on high-dimensional applications has led us to employ Tn. Focusing
on (9) for conciseness, note that it is a special case of

sup
s∈Rp

√
n
〈
A†s� x̂�n

〉
s.t. A†s ≤ 0 and ω(s) ≤ 1� (12)

where ω is a convex weight function satisfying ω(s) = ω(−s), ω(s) ≥ 0, and ω(γs) =
γω(s) for any γ ≥ 0—for example, to recover (9), set ω(s) = ‖i(AA′)†s‖1. If ω(s) > 0
whenever s �= 0, then the linearity of the objective and the homogeneity of ω imply that
(12) in fact equals

max
{

0� sup
s∈Rp

√
n
〈
A†s� x̂�n

〉
ω(s)

s.t. A†s ≤ 0 and ω(s) > 0
}
� (13)

Representation (13) shows that (12) implicitly weights each term
√
n〈A†s� x̂�n〉 while re-

maining computationally tractable—that is, (12) can be computed by convex program-
ming, while (13) cannot. For instance, if we set ω(s) = ‖i(AA′)†s‖2 withi the standard
deviation of

√
nAx̂�n, then ω(s) = (Var{

√
n〈A†s� x̂�n〉})1/2 and, by (13), the statistic in (12)

implicitly studentizes. In (9), we instead use the weighting ω(s) = ‖i(AA′)†s‖1 because:
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(i) it ensures (9) is a linear program, which scales better than a quadratically-constrained
program; and (ii) using a ‖·‖1-constraint allows us to obtain distributional approximations
using coupling arguments under ‖ · ‖∞, which are available under weaker conditions on
p than under ‖ · ‖2. Nonetheless, we emphasize that in certain applications, a researcher
may prefer to use weighting functions such as ω(s) = ‖i(AA†)s‖2 instead. We expect
that, under suitable restrictions, a version of our test that simply replaces ‖i(AA′)†s‖1

with the desired ω(s) everywhere will be asymptotically valid.

4.2. The Distribution

We next introduce assumptions that enable us to approximate the distribution of Tn.
Unless otherwise stated, all quantities are allowed to depend on n.

ASSUMPTION 4.1: (i) {Zi}ni=1 are i.i.d. with Zi ∈ Z and Zi ∼ P ∈ P; (ii) there is a sequence
an = o(1), and functions ψi(·�P) : Z → Rp and ψe(·�P) : Z → Rp satisfying uniformly in
P ∈ P ∥∥∥∥∥(e

)†

{(
Ip −AA†

)√
n
{
β̂n −β(P)

}− 1√
n

n∑
i=1

ψe(Zi�P)

}∥∥∥∥∥
∞

=OP (an)�

∥∥∥∥∥(i
)†

{
AA†√n{β̂n −β(P)

}− 1√
n

n∑
i=1

ψi(Zi�P)

}∥∥∥∥∥
∞

=OP (an)�

ASSUMPTION 4.2: For �j(P) ≡ EP[ψj(Z�P)ψj(Z�P)′]: (i) EP[ψj(Z�P)] = 0 for all P ∈
P and j ∈{e� i}; (ii) the eigenvalues of (j)†�j(P)(j)† are bounded in j ∈{e� i}, n, and
P ∈ P; (iii)�(z�P) ≡ ‖(e)†ψe(z�P)‖∞ ∨‖(i)†ψi(z�P)‖∞ satisfies supP∈P ‖�(·�P)‖P�3 ≤
M3�� <∞ with M3�� ≥ 1; (iv) i, e are symmetric.

ASSUMPTION 4.3: (i) ψj(Z�P) ∈ range{j} P-almost surely for all P ∈ P and j ∈{e� i};
(ii) (Ip − AA†){β̂n − β(P)} ∈ range{�e(P)} and AA†{β̂n − β(P)} ∈ range{�i(P)} with
probability tending to 1 uniformly in P ∈ P.

Assumption 4.1(ii) requires our estimators to be asymptotically linear with influ-
ence functions whose moments are disciplined by Assumption 4.2(i)–(iii). In Assump-
tion 4.2(iv), we additionally impose that the weighting matrices be symmetric. Finally,
Assumption 4.3(i) is a mild regularity condition that ensures the approximating distribu-
tion is not infinite with positive probability. For similar reasons, Assumption 4.3(ii) en-
sures that the supports of our estimators are contained in the supports of their Gaussian
approximations.

For ψe(Z�P) and ψi(Z�P) the influence functions in Assumption 4.1(ii), we set
ψ(Z�P) ≡ (ψe(Z�P)′�ψi(Z�P)′)′ and let �(P) ≡ EP[ψ(Z�P)ψ(Z�P)′]. For notational
simplicity, we also define the rate rn ≡M3��(p2 log5(1 +p)/n)1/6 + an. Our next theorem
gives a distributional approximation for Tn that, under appropriate moment conditions, is
valid uniformly in P ∈ P0 provided p2 log5(p)/n= o(1).

THEOREM 4.1: Let Assumptions 4.1, 4.2, 4.3 hold, and rn = o(1). Then, there is
(Ge

n(P)′�Gi
n(P)′)′ ≡Gn(P) ∼N(0��(P)) such that uniformly in P ∈ P0,

Tn = max
{

sup
s∈Ve

〈
s�Ge

n(P)
〉
� sup
s∈V i

〈
A†s�A†

G
i
n(P)

〉+ √
n
〈
A†s�A†β(P)

〉}+OP (rn)�
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The asymptotic approximation in Theorem 4.1 depends on linear programs whose so-
lutions must be attained at one of a finite number of extreme points. It follows that Tn
is asymptotically equivalent to the maximum of a Gaussian vector—an observation that
suggests a connection to the high-dimensional central limit theorem of Chernozhukov,
Chetverikov, Kato, and Koike (2019). The proof of Theorem 4.1, however, does not rely
on Chernozhukov et al. (2019) because the number of extreme points depends on A in a
non-transparent way and upper bounds, such as that in McMullen (1970), are exponen-
tial in p. Nonetheless, we note that for certain A and β̂n, Chernozhukov et al. (2019)
may yield better coupling rates than Theorem 4.1 and allow p to be larger than n. On the
other hand, we should not expect such conditions to apply when β̂n is a vector of empirical
probabilities as in Examples 2.2–2.5—a setting we expect to at least require p/n= o(1).

4.3. The Critical Value

To obtain a critical value, we assume the availability of “bootstrap” estimates (Ĝe′
n � Ĝ

i′
n)

′

for the distribution of (Ge
n(P)′�Gi

n(P)′)′. Given such estimates, we may follow a number of
approaches for obtaining critical values; see, for example, Section 4.4.1. Below, we focus
on an approach that has favorable power properties in simulations.

Step 1. First, we observe that the main challenge in employing Theorem 4.1 for infer-
ence is the presence of the nuisance function f (·�P) : Rp → R given by

f (s�P) ≡ √
n
〈
A†s�A†β(P)

〉
� (14)

While f (·�P) cannot be consistently estimated, we can construct a suitable upper bound
for it. To this end, we note that, in applications, some coordinates of β(P) may be known;
see Section 2. We therefore decompose β(P) = (βu(P)′�β′

k)′ where βk is a known con-
stant, and similarly decompose any b ∈ Rp into subvectors of conformable dimensions
b= (b′

u� b
′
k)′. We then define the restricted estimator

β̂r
n ∈ arg min

b=(b′
u�b

′
k)′

sup
s∈V i

∣∣〈A†s� x̂�n −A†b
〉∣∣ s.t. bk = βk�Ax= b for some x≥ 0� (15)

which may be computed through linear programming; see Fang et al. (2021). Since
f (s�P) ≤ 0 for all s ∈ V i and P ∈ P0 by Theorem 3.1, it follows that under the null hy-
pothesis, λnf (s�P) ≥ f (s�P) for any λn ≤ 1 and s ∈ V i. We therefore set

Ûn(s) ≡ λn
√
n
〈
A†s�A†β̂r

n

〉
� (16)

which is a consistent estimator for λnf (s�P) provided λn ↓ 0 at a suitable rate; we discuss
choices of λn in Remark 4.2. The upper bound Ûn reflects the structure of the null hy-
pothesis in that: (i) Ûn(s) ≤ 0 for all s ∈ V i and (ii) there is a b ∈ Rp satisfying Ax= b for
some x≥ 0 such that Ûn(s) = √

n〈A†s�A†b〉.
Step 2. The asymptotic approximation from Theorem 4.1 is increasing (in a first-order

stochastic dominance sense) in f (·�P) (under the pointwise partial order). Hence, for a
nominal level α test, we may use the bootstrap quantile

ĉn(1 − α) ≡ inf
{
u : P

(
max

{
sup
s∈Ve

〈
s� Ĝe

n

〉
� sup
s∈V i

〈
A†s�A†

Ĝ
i
n

〉+ Ûn(s)
}

≤ u|{Zi}ni=1

)
≥ 1 − α

}

as a critical value for Tn. Computing ĉn(1 − α) requires solving one linear program
per bootstrap replication. We also note that because 0 ∈ V i, any s ∈ V i for which
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√
n〈A†s�A†β(P)〉 tends to minus infinity plays an asymptotically negligible role in the

distributional approximation of Theorem 4.1. Our critical value reflects this structure be-
cause Ûn(s) and λn

√
n〈A†s�A†β(P)〉 are asymptotically equivalent, and thus any s for

which λn
√
n〈A†s�A†β(P)〉 tends to minus infinity plays an asymptotically negligible role

in determining ĉn(1 − α). For example, in an asymptotic setting in which P is fixed and
λn

√
n→ ∞, any s satisfying 〈A†s�A†β(P)〉< 0 plays an asymptotically negligible role in

both the distribution of Tn and our bootstrap approximation.
Given the above definitions, we finally define φn ≡ 1{Tn > ĉn(1 −α)} as our test; that is,

we reject the null hypothesis whenever Tn exceeds ĉn(1 − α). To establish the asymptotic
validity of this test, we impose one final assumption.

ASSUMPTION 4.4: (i) For exchangeable {Wi�n}ni=1 independent of {Zi}ni=1, we have∥∥∥∥∥(j(P)
)†

{
Ĝ

j
n − 1√

n

n∑
i=1

(Wi�n − W̄n)ψj(Zi�P)

}∥∥∥∥∥
∞

=OP (an)

uniformly in P ∈ P for j ∈{e� i} and W̄n ≡ ∑n

i=1Wi�n/n; (ii) for some a�b > 0, P(|W1�n −
E[W1�n]|> t) ≤ 2 exp{−t2/(b+ at)} for all t ∈ R+ and n; (iii) |

∑n

i=1(Wi�n − W̄n)2/n− 1|=
OP (n−1/2) and supn E[|W1�n|3] < ∞; (iv) for some q ∈ (1�+∞], supP∈P ‖�2(·�P)‖P�q ≤
Mq��2 <∞; (v) for j ∈{e� i}, Ĝj

n ∈ range{�j(P)} with probability tending to 1 uniformly in
P ∈ P.

Assumption 4.4 accommodates a variety of resampling schemes, such as the nonpara-
metric, Bayesian, score, or weighted bootstrap. In parallel to Assumption 4.1(ii), Assump-
tion 4.4(i) imposes a linearization assumption on our bootstrap estimates. Assumptions
4.4(ii)–(iii) state restrictions on the bootstrap weights that are satisfied by commonly used
resampling schemes. Assumption 4.4(iv) strengthens the moment restrictions in Assump-
tion 4.2(iii) (if q > 3/2) and is imposed to sharpen our estimates of the coupling rate for
the bootstrap statistics. Finally, Assumption 4.4(v) is a bootstrap analogue to Assump-
tion 4.3(ii). These conditions suffice for showing that the distribution of (Ĝi′

n� Ĝ
e′
n )′ con-

ditional on the data is suitably consistent for the distribution of (Ge
n(P)′�Gi

n(P)′)′ at a
rate

bn ≡
√
p log(1 + n)M3��

n1/4 +
(
p log5/2(1 +p)M3��√

n

)1/3

+
(
p log3(1 +p)n1/qMq��2

n

)1/4

+ an;

see Lemma A.5. In particular, under appropriate moment restrictions, the bootstrap is
consistent provided p2/n= o(1) (up to logs). The consistency of the exchangeable boot-
strap when p grows with n is to our knowledge a novel result.

Before establishing the asymptotic validity of our test, we introduce some final pieces of
notation. First, we note that the asymptotic approximation obtained in Theorem 4.1 con-
tains two linear programs, whose solutions can be shown to belong to the sets E e ≡ {s ∈
Rp : s is an extreme point of eVe} and E i ≡ {s ∈ Rp : s is an extreme point of (AA′)†V i}.
We also define σe(s�P) ≡ {EP[(〈s� (e)†

G
e
n(P)〉)2]}1/2, σ i(s�P) ≡ {EP[(s�Gi

n(P)〉)2]}1/2,
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and set

σ̄ (P) ≡ max
j∈{e�i}

max
s∈E j

σ j(s�P)� σ (P) ≡ min
j∈{e�i}

min
s∈E j:σ j (s�P)>0

σ j(s�P)�

where we let σ (P) = +∞ if σ j(s�P) = 0 for all s ∈ E j, j ∈{e� i}. For any random variable
V ∈ R, let med{V } denote its median, and for any P ∈ P, define

m(P) ≡ med
{

max
{

sup
s∈Ve

〈
s�Ge

n(P)
〉
� sup
s∈V i

〈
A†s�A†

G
i
n(P)

〉}}
�

Last, we introduce the sequence ξn ≡ rn ∨bn ∨λn
√

log(1 +p). Our next result establishes
the asymptotic validity of the proposed test.

THEOREM 4.2: Let Assumptions 4.1–4.4 hold, α ∈ (0�0�5), and 0 ≤ λn ≤ 1. If ξn satisfies
ξn = o(1) and supP∈P(m(P) + σ̄ (P))/σ2(P) = o(ξ−1

n ), then

lim sup
n→∞

sup
P∈P0

EP[φn] ≤ α� (17)

Under additional requirements, it is possible to show (17) holds with equality. For in-
stance, if p is fixed with n and

√
nλn → ∞, then the limiting rejection probability of φn

tends to α for any P on the “boundary” of P0—a result that, together with Theorem 4.2,
implies the asymptotic size of our test equals α. We also note that Theorem 4.2 imposes
a rate condition that constrains how p can grow with n. This rate condition depends on
A and the weighting matrices e and i. As we show in Remark 4.1 below, it is possi-
ble to obtain universal (in A) bounds for (m(P) + σ̄ (P))/σ2(P) when setting j to be
the standard deviation matrix of Gj

n(P) for j ∈{e� i}. While such bounds provide sufficient
conditions for the rate requirements in Theorem 4.2, we emphasize that they can be quite
conservative for a specific A. Finally, we note that if, as in much of the literature, one
considers the case in which p is fixed with n, then Remark 4.1 implies Theorem 4.2 holds
under Assumptions 4.1–4.4 and the requirements λn ↓ 0 and an = o(1).

REMARK 4.1: Whenever j equals the standard deviation matrix of Gj
n(P) for j ∈{e� i},

it is possible to obtain universal (in A) bounds on σ̄ (P), σ (P), and m(P). In particular,
under such choice of j, we have p−1/2 ≤ σ (P) ≤ σ̄ (P) ≤ 1 and m(P) �

√
log(1 +p).

The resulting universal (in A) bound for (m(P) + σ̄ (P))/σ2(P), however, may be quite
conservative for a specific A.

REMARK 4.2: In simulations, we find two choice of λn to perform well. The first is to
set i to be an estimate of the standard deviation matrix of G

i
n(P) and, based on the

law of iterated logartihm, set λr
n = 1/

√
log(e∨p) log(e∨ log(e∨ n)). The second is to

set λb
n = min{1�1/τ̂n} where τ̂n is the 1 − 1/

√
log(e∨ log(e∨ n)) bootstrap quantile of

sups∈V i〈A†s�A†
Ĝ

i
n〉, which typically is smaller than λr

n.

4.4. Extensions

4.4.1. Two-Stage Critical Value

We have focused on a particular choice of critical value due to its favorable power prop-
erties in simulations. An alternative critical value may be obtained by following Romano,
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Shaikh, and Wolf (2014) and Bai, Santos, and Shaikh (2019). Specifically, we may set

ĉ(1)
n (1 − γ) ≡ inf

{
u : P

(
sup
s∈V i

〈
A†s�−A†

Ĝ
i
n

〉≤ u|{Zi}ni=1

)
≥ 1 − γ

}

for some γ ∈ (0�α) and define Ũn(s) ≡ min{
√
n〈A†s� x̂�n〉+ ĉ(1)

n (1−γ)�0}. The function Ũn

is an upper confidence region for f (·�P) (as in (14)) with uniform (in P ∈ P0) asymptotic
coverage probability 1 − γ. For a nominal level α test, we may then compare Tn to the
1 − α+ γ bootstrap quantile of

max
{

sup
s∈Ve

〈
s� Ĝe

n

〉
� sup
s∈V i

〈
A†s�A†

Ĝ
i
n

〉+ Ũn(s)
}
�

An appealing feature of the described test is that it does not require selecting λn.
However, in simulations, we find its power is lower than that of φn. Intuitively, this is
due to Ũn not reflecting the structure of the null hypothesis in that it does not satisfy
Ũn(s) = √

n〈A†s�A†b〉 for some b such that Ax= b with x≥ 0.

4.4.2. Alternative Sampling Frameworks

While we have focused on i.i.d. settings, we note that extensions to other asymptotic
frameworks can be straightforward. Consider, for example, Andrews, Roth, and Pakes
(2019), who studied a class of models in which the parameter of interest π satisfies

EP
[
G(D�π) −M(V �π)δ|V

]≤ 0 for some δ ∈ Rdδ� (18)

where G(D�π) ∈ Rp, M(V �π) is a p × dδ matrix, and both are known functions of
(D�V �π). Andrews, Roth, and Pakes (2019) observed that testing whether a specified
value π0 satisfies (18) is facilitated by conditioning on {Vi}ni=1. Similarly, setting δ+ ≡ δ∨ 0
and δ− ≡ −(δ∧ 0) for any δ ∈ Rdδ , we note that if π0 satisfies (18), then

1
n

n∑
i=1

EP
[
G(D�π0)|Vi

]= 1
n

n∑
i=1

M(Vi�π0)
(
δ+ − δ−)−� for some � ∈ Rp

+� δ ∈ Rdδ�

which may be mapped into (1) after conditioning on {Vi}ni=1 by setting β(P) ≡∑
i EP[G(D�

π0)|Vi]/n—note A does not depend on P due to the conditioning on {Vi}ni=1. By
letting β̂n ≡ ∑n

i=1G(Di�π0)/n, our test remains largely the same, with the excep-
tion that (Ĝe′

n � Ĝ
i′
n)

′ must be consistent for the law of ((e)†(Ip − AA†)
√
n{β̂n −

β(P)}′� (i)†AA†√n{β̂n −β(P)}′)′ conditional on {Vi}ni=1.

APPENDIX

While we assumed i and e to be non-stochastic for ease of exposition, we note The-
orems 4.1 and 4.2 can be extended to allow for estimated weights. Writing i(P) and
e(P), such an extension requires that Assumptions 4.2–4.3 hold uniformly in P with j

replaced by j(P) and that their estimators ̂j
n satisfy the following:

ASSUMPTION A.1: For j ∈{e� i}: (i) ̂j
n is symmetric; (ii) there is a symmetric matrix

j(P) satisfying ‖(j(P))†(̂j
n − j(P))‖o�∞ = OP (an/

√
log(1 +p)) uniformly in P ∈ P;

(iii) lim infn→∞ infP∈P P(range{̂j
n}= range{j(P)}) = 1.
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PROOF OF LEMMA 3.1: Follows from result 3F in Strang (1993) and N⊥ equaling the
range of A′ by Theorem 6.6.2 in Luenberger (1969). Q.E.D.

PROOF OF THEOREM 3.1: Fix any β ∈ R and note that by Farkas’s lemma (see, e.g.,
Corollary 5.85 in Aliprantis and Border (2006)), β = Ax̃ for some x̃ ≥ 0 if and only if
there does not exist a y ∈ Rp satisfying A′y ≤ 0 (in Rd) and 〈y�β〉 > 0. In particular, the
condition β=Ax̃ for some x̃≥ 0 is equivalent to

〈y�β〉 ≤ 0 for all y ∈ Rp such that A′y ≤ 0
(
in Rd

)
� (A.1)

Next, note there is a unique x� ∈ N⊥ satisfying β = Ax� by Lemma 3.1. Therefore,
〈y�Ax�〉 = 〈A′y�x�〉, {A′y : y ∈ Rp and A′y ≤ 0} = range{A′} ∩ Rd

−, and range{A′} = N⊥

by Theorem 6.6.3 in Luenberger (1969) imply〈
s�x�

〉≤ 0 for all s ∈N⊥ ∩ Rd
− (A.2)

is equivalent to (A.1). In summary, if β ∈ R, then β =Ax̃ for some x̃ ≥ 0 if and only if
(A.2) holds and hence the theorem follows. Q.E.D.

PROOF OF THEOREM 4.1: First note that since β(P) ∈R for all P ∈ P0 by Theorem 3.1,
we have AA†β(P) = β(P) and therefore x̂�n =A†β̂n yields that

sup
s∈Ve

√
n
〈
s� β̂n −Ax̂�n

〉= sup
s∈Ve

〈
s�
(
Ip −AA†

)√
n
{
β̂n −β(P)

}〉
(A.3)

for all P ∈ P0. Similarly, employing that A†AA† =A† (see Proposition 6.11.1(5) in Luen-
berger (1969)) together with x̂�n =A†β̂n implies for all P ∈ P0 that

sup
s∈V i

√
n
〈
A†s� x̂�n

〉= sup
s∈V i

〈
A†s�A†AA†√n{β̂n −β(P)

}〉+ √
n
〈
A†s�A†β(P)

〉
� (A.4)

Next, note that Assumption 4.3(i) implies range{�j(P)} ⊆ range{j} for j ∈{e� i}. There-
fore, Assumption 4.3(ii) implies (Ip−AA†)

√
n{β̂n−β(P)} ∈ range{e} andAA†√n{β̂n−

β(P)}∈ range{i} with probability tending to 1 uniformly in P ∈ P. Hence, by Lemma A.4,
we may apply Lemma A.2 with Ŵ

e
n(P) = (Ip−AA†)

√
n{β̂n−β(P)}, Ŵi

n(P) =AA†√n×
{β̂n − β(P)}, and f̂n(s�P) = √

n〈A†s�A†β(P)〉, which together with results (A.3) and
(A.4) establish the claim of the theorem. Q.E.D.

PROOF OF THEOREM 4.2: For notational simplicity, we first set η≡ 1 − α and define

Mn(s�P) ≡ 〈
A†s�A†

G
i
n(P)

〉
� Un(s�P) ≡ √

n
〈
A†s�A†β(P)

〉
� (A.5)

A
e
n(s�P) ≡ 〈

s�
(
e

)†
G

e
n(P)

〉
� A

i
n(s�P) ≡ 〈

s�Gi
n(P) + √

nβ(P)
〉
� (A.6)

and set sequences �n ↓ 0 and τn ↑ 1 to satisfy rn ∨ bn ∨ λn
√

log(1 +p) = o(�n) and

sup
P∈P

(
m(P) + σ̄ (P)zτn

)
/σ2(P) = o(�−1

n

)
� (A.7)

where zτn is the τn quantile of N(0�1). Also set ε > 0 to satisfy η− ε > 0�5 and

En(P) ≡ {
ĉn(η) ≥ (

σ (P)zη−ε
)
/2� Un(s�P) ≤ Ûn(s) + �n for all s ∈ V i

}
� (A.8)
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Next, note that 0 ∈ Ve and 0 ∈ V i imply ĉn(η) ≥ 0. Therefore, φn = 1 implies Tn > 0,
which together with Lemma A.6 implies the theorem is immediate on D0 ≡ {P ∈ P0 :
σ j(s�P) = 0 for all s ∈ E j and all j ∈{e� i}}. Hence, without loss of generality, we assume
that for all P ∈ P0, σ j(s�P) > 0 for some s ∈ E j and j ∈{e� i}. Furthermore, since φn = 1
implies Tn > 0, Lemmas A.1 and A.3 yield

lim sup
n→∞

sup
P∈P0

P(φn = 1) = lim sup
n→∞

sup
P∈P0

P
(
Tn > ĉn(η); En(P)

)
� (A.9)

Moreover, for j ∈{e� i}, Gj
n(P) ∈ range{�j(P)} ⊆ range{j} by Theorem 3.6.1 in Bogachev

(1998) and Assumption 4.3(i). Hence,j(j)†
G

j
n(P) = G

j
n(P) for j ∈{e� i}, which, together

with Hölder’s inequality, symmetry of j, the definitions of Ve and V i, and Un(s�P) ≤ 0
for s ∈ V i and P ∈ P0 by Theorem 3.1, implies

sup
s∈Ve

〈
s�Ge

n(P)
〉= sup

s∈Ve

〈
es�

(
e

)†
G

e
n(P)

〉
<∞�

sup
s∈V i

Mn(s�P) +Un(s�P) = sup
s∈V i

〈
i
(
AA′)†

s�
(
i
)†
G

i
n(P)

〉+Un(s�P) <∞�

Thus, by Theorem 4.1 and Lemmas A.10, A.11, we obtain, uniformly in P ∈ P0,

Tn = max
s∈Ee

A
e
n(s�P) ∨ max

s∈E i
A

i
n(s�P) +OP (rn)� (A.10)

Next, define c
(1)
n (τ�P) ≡ inf{u : P(sups∈V i Mn(s�P) ≤ u) ≥ τ} for any τ ∈ (0�1) and

set E i�τ(P) ≡ {s ∈ E i : −〈s�√nβ(P)〉 ≤ c
(1)
n (τ�P)}. Since 0 ∈ V i implies c(1)

n (τ�P) ≥ 0,
Lemma A.11 yields 0 ∈ E i�τ(P) and therefore we have

P
(

max
s∈E i

A
i
n(s�P) = max

s∈E i�τ (P)
A

i
n(s�P)

)

≥ P
(

max
s∈E i\E i�τ (P)

A
i
n(s�P) ≤ 0

)
≥ P

(
sup
s∈V i

Mn(s�P) ≤ c(1)
n (τ�P)

)
≥ τ� (A.11)

where the second and final inequalities hold by definitions of E i�τ(P) and c(1)
n (τ�P), and

E i ⊆ (AA′)†V i. Next, define the sets Cn(e�P) ≡ E e and Cn(i�P) ≡ E i�τn (P) and note that
results (A.9), (A.10), (A.11), τn ↑ 1, and rn = o(�n) imply that

lim sup
n→∞

sup
P∈P0

P(φn = 1)

≤ lim sup
n→∞

sup
P∈P0

P
(

max
j∈{e�i}

max
s∈Cn(j�P)

A
j
n(s�P) > ĉn(η) − �n;En(P)

)
� (A.12)

Defining An(P) ≡ {(j� s) : j ∈{e� i}� s ∈ Cn(j�P)� σ j(s�P) > 0}, then note that, by (A.7),
En(P) implies ĉn(η) − �n > 0 for n sufficiently large. Since E[Ae

n(s�P)] = 0 for all s ∈ E e,
while E[Ai

n(s�P)] ≤ 0 for all s ∈ E i�τn (P) due to 〈(AA′)†s�β(P)〉 ≤ 0 for all s ∈ V i by
Theorem 3.1, (A.12) yields the theorem if An(P) = ∅. Hence, assuming without loss of
generality An(P) �= ∅, we obtain

lim sup
n→∞

sup
P∈P0

P(φn = 1) ≤ lim sup
n→∞

sup
P∈P0

P
(

max
(j�s)∈An(P)

A
j
n(s�P) > ĉn(η) − �n; En(P)

)
� (A.13)
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By Lemma A.5, there is a (Ge�
n (P)′�Gi�

n (P)′)′ ≡ G
�
n(P) ∼ N(0��(P)), independent of

{Zi}ni=1, and satisfying ‖(j)†{Ĝj
n −G

j�
n}‖∞ =OP (bn) uniformly in P ∈ P for j ∈{e� i}. Thus,

by Lemma A.2 and arguing as in (A.10), we get

max
{

sup
s∈Ve

〈
s� Ĝe

n

〉
� sup
s∈V i

〈
A†s�A†

Ĝ
i
n

〉+Un(s�P)
}

= max
{

max
s∈Ee

〈
s�
(
e

)†
G

e�
n (P)

〉
�max
s∈E i

〈
s�Gi�

n (P) + √
nβ(P)

〉}+OP (bn) (A.14)

uniformly in P ∈ P0. Setting c(2)
n (η�P) ≡ inf{u : P(max(j�s)∈An(P) A

j
n(s�P) ≤ u) ≥ η}, we

then obtain from results (A.13) and (A.14), En(P) implying that ĉn(η) is bounded from
below by the conditional on {Zi}ni=1 η quantile of

max
{

sup
s∈Ve

〈
s� Ĝe

n

〉
� sup
s∈V i

〈
A†s�A†

Ĝ
i
n

〉+Un(s�P)
}

− �n�

Gn(P) and G
�
n(P) sharing the same distribution, G�

n(P) being independent of {Zi}ni=1,
Lemma 11 in Chernozhukov, Lee, and Rosen (2013), and bn = o(�n), that

lim sup
n→∞

sup
P∈P0

P(φn = 1) ≤ lim sup
n→∞

sup
P∈P0

P
(

max
(j�s)∈An(P)

A
j
n(s�P) > c(2)

n (ηn�P) − 3�n
)

(A.15)

for some ηn ↑ η. Next, set N((j� s)�P) ≡ (Aj
n(s�P) − c

(2)
n (ηn�P))/σ j(s�P) and μ

n
(P) =

−(c(1)
n (τn�P) + |c(2)

n (τn�P)|)/σ (P) and note that, by definition of E i�τn (P), we have
E[N((j� s)�P)] ≥ μ

n
(P). Therefore, Lemma A.9 yields that

P
(∣∣∣ max

(j�s)∈An(P)
A

j
n(s�P) − c(2)

n (ηn�P)
∣∣∣≤ 3�n

)

≤ P
(∣∣∣ max

(j�s)∈An(P)
N
(
(j� s)�P

)∣∣∣≤ 3�n
σ (P)

)

�
(
�n/σ (P)

)(
1 ∨

(
med

{
max

(j�s)∈An(P)
N
(
(j� s)�P

)}−μ
n
(P)

))
� (A.16)

Moreover, j(j)†
G

j
n(P) =G

j
n(P), E e ⊂eVe, and E i�τn (P) ⊆ (AA′)†V i imply

med
{

max
(j�s)∈An(P)

N
(
(j� s)�P

)}≤ (
m(P) + ∣∣c(2)

n (ηn�P)
∣∣)/σ (P) (A.17)

for all P ∈ P0. Furthermore, since τn ↑ 1, ηn ↑ η > 1/2, and 〈s�β(P)〉 ≤ 0 for any
s ∈ E i�τn (P) ⊂ (AA′)†V i by Theorem 3.1, we obtain by Borell’s inequality (see, e.g., the
corollary on page 82 of Davydov, Lifshits, and Smorodina (1998)) that c(1)

n (τn�P) ∨
c

(2)
n (ηn�P) ≤ m(P) + zτnσ̄ (P) for n sufficiently large. Also note c(2)

n (ηn�P) ≥ −c(1)
n (τn�P)

by definition of E i�τn (P) and ηn ↑ η> 1/2. Hence, (A.16) and (A.17) yield

P
(∣∣∣ max

(j�s)∈An(P)
A

j
n(s�P) − c(2)

n (ηn�P)
∣∣∣≤ 3�n

)
� �n

σ (P)

(
1 ∨ m(P) + zτn (P)σ̄ (P)

σ (P)

)
�

which together with (A.7), (A.15), and ηn ↑ η≡ 1 − α yield the theorem. Q.E.D.
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LEMMA A.1: Let Assumptions 4.1, 4.2, 4.3(i) hold, λn ∈ [0�1], and rn = o(1). Then,
for any sequence �n satisfying λn

√
log(1 +p) = o(�n), it follows that P(sups∈V i{

√
n〈A†s�

A†β(P)〉 − Ûn(s)}≤ �n) tends to 1 uniformly in P ∈ P0.

PROOF: Theorem 3.1 implies 〈A†s�A†β(P)〉 ≤ 0 for all s ∈ V i, P ∈ P0, and hence

sup
s∈V i

{√
n
〈
A†s�A†β(P)

〉− Ûn(s)
}

≤ sup
s∈V i

λn
√
n
〈
A†s�A†

{
β(P) − β̂r

n

}〉
≤ sup

s∈V i
λn

√
n
∣∣〈A†s� x̂�n −A†β̂r

n

〉∣∣+ sup
s∈V i

λn
√
n
∣∣〈A†s�A†β(P) − x̂�n

〉∣∣� (A.18)

The definition of β̂r
n, x̂

�
n =A†β̂n, β(P) ∈R for any P ∈ P0, and (A.18) then yield

sup
s∈V i

{√
n
〈
A†s�A†β(P)

〉− Ûn(s)
}≤ sup

s∈V i
2λn

∣∣〈A†s�A†AA†√n{β̂n −β(P)
}〉∣∣� (A.19)

Applying Lemma A.2 with (Ŵi
n(P)�Ŵe

n(P)) = ±(AA†√n{β̂n − β(P)}�Ge
n(P)), we then

obtain from Lemma A.4 and ±(Ge
n(P)′�Gi

n(P)′)′ ∼N(0��(P)) that

sup
s∈V i

∣∣〈A†s�A†AA†√n{β̂n −β(P)
}〉∣∣= sup

s∈V i

∣∣〈A†s�A†
G

i
n(P)

〉∣∣+OP (rn) (A.20)

uniformly in P ∈ P0. Since Theorem 3.6.1 in Bogachev (1998) and Assumption 4.3(i) imply
G

i
n(P) ∈ range{�i(P)} ⊆ range{i}, we have i(i)†

G
i
n(P) = G

i
n(P). Therefore, (A.19),

(A.20), and Hölder’s inequality yield, uniformly in P ∈ P0, that

sup
s∈V i

2λn
∣∣〈A†s�A†AA†√n{β̂n −β(P)

}〉∣∣
= sup

s∈V i
2λn

∣∣〈A†s�A†
G

i
n(P)

〉∣∣+OP (λnrn)

≤ 2λn
∥∥(i

)†
G

i
n(P)

∥∥
∞ +OP (λnrn) =OP

(
λn

√
log(1 +p)

)
� (A.21)

where the final equality follows from Markov’s inequality and Lemma A.8 and Assump-
tion 4.2(ii) implying supP∈PEP[‖(i)†

G
i
n(P)‖∞] �

√
log(1 +p). The lemma follows from

(A.19), (A.21), and λn
√

log(1 +p) = o(�n). Q.E.D.

LEMMA A.2: Let Assumptions 4.2(ii), 4.2(iv), and 4.3(i) hold, and suppose (Ŵe
n(P)′�

Ŵ
i
n(P)′)′ ≡ Ŵn(P) satisfies ‖(j)†{Ŵj

n(P)−W
j
n(P)}‖∞ =OP (ωn) for j ∈{e� i} and Wn(P) ≡

(We
n(P)′�Wi

n(P)′)′ ∼ N(0��(P)). If Ŵj
n(P) ∈ range{j} with probability tending to 1 uni-

formly in P ∈ P for j ∈{e� i}, then for any possibly random function f̂n(·�P) : Rp → R, it
follows uniformly in P ∈ P that

sup
s∈Ve

〈
s�Ŵe

n(P)
〉= sup

s∈Ve

〈
s�We

n(P)
〉+OP (ωn)�

sup
s∈V i

〈
A†s�A†

Ŵ
i
n(P)

〉+ f̂n(s�P) = sup
s∈V i

〈
A†s�A†

W
i
n(P)

〉+ f̂n(s�P) +OP (ωn)�
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PROOF: We establish only the second claim, noting that the first follows from identical
arguments. First, note i(A†)′A† = i(AA′)†, Hölder’s inequality, definition of V i, and
symmetry of i imply uniformly in P ∈ P that

sup
s∈V i

∣∣〈A†s�A†i
(
i
)†(

Ŵ
i
n(P) −W

i
n(P)

)〉∣∣≤ ∥∥(i
)†(

Ŵ
i
n(P) −W

i
n(P)

)∥∥
∞

=OP (ωn)� (A.22)

Hence, since i(i)†
Ŵ

i
n(P) = Ŵ

i
n(P) whenever Ŵ

i
n(P) ∈ range{i}, we obtain from

Ŵ
i
n(P) ∈ range{i} with probability tending to 1 and (A.22) that

sup
s∈V i

〈
A†s�A†

Ŵ
i
n(P)

〉+ f̂n(s�P) = sup
s∈V i

〈
A†s�A†i

(
i
)†
W

i
n(P)

〉
+ f̂n(s�P) +OP (ωn) (A.23)

uniformly in P ∈ P. Finally, note W
i
n(P) ∈ range{�i(P)} by Theorem 3.6.1 in Bogachev

(1998). Since Assumption 4.3(i) implies �i(P) = i(i)†�i(P), it follows W
i
n(P) =

i(i)†
W

i
n(P), which together with (A.23) establishes the lemma. Q.E.D.

LEMMA A.3: Let Assumptions 4.1(i), 4.2, 4.3, 4.4 hold, η ∈ (0�5�1), ε ∈ (0�η − 0�5),
zη be the η quantile of N(0�1), rn ∨ bn = o(1), supP∈P(m(P) + σ̄ (P))/σ2(P) = o(r−1

n ∧
b−1
n ). Then, there are {En(P)} with lim infn→∞ infP∈P0 P({Zi}ni=1 ∈ En(P)) = 1 and on En(P)

it holds that ĉn(η) ≥ (σ (P)zη−ε)/2 whenever Tn > 0.

PROOF: By Lemma A.5, there are (Ge�
n (P)′�Gi�

n (P)′)′ ≡ G
�
n(P) ∼ N(0��(P)) that are

independent of {Zi}ni=1 and satisfy ‖(j)†{Ĝj
n −G

j�
n (P)‖∞ =OP (bn) uniformly in P ∈ P for

j ∈{e� i}. Further define L̂n ∈ R and L
�
n(P) ∈ R to be given by

L̂n ≡ max
{

sup
s∈Ve

〈
s� Ĝe

n

〉
� sup
s∈V i

〈
A†s�A†

Ĝ
i
n

〉+ Ûn(s)
}
� (A.24)

L
�
n(P) ≡ max

{
sup
s∈Ve

〈
s�Ge�

n (P)
〉
� sup
s∈V i

〈
A†s�A†

G
i�
n (P)

〉+ Ûn(s)
}
� (A.25)

and note that Assumptions 4.3(i) and 4.4(v) together with Lemma A.2 yield

sup
s∈Ve

〈
s� Ĝe

n

〉= sup
s∈Ve

〈
s�Ge�

n (P)
〉+OP (bn)� (A.26)

sup
s∈V i

〈
A†s�A†

Ĝ
i
n

〉+ Ûn(s) = sup
s∈V i

〈
A†s�A†

G
i�
n (P)

〉+ Ûn(s) +OP (bn)� (A.27)

uniformly in P ∈ P. We establish the lemma by studying three separate cases.
Case I: Suppose P ∈ Pe

0 ≡{P ∈ P0 : σe(s�P) > 0 for some s ∈ E e}. First, set

En(P) ≡
{
P
(∣∣∣sup
s∈Ve

〈
s� Ĝe

n

〉− sup
s∈Ve

〈
s�Ge�

n (P)
〉∣∣∣> (

σ (P)zη−ε
)
/2|{Zi}ni=1

)
≤ ε

}

and note that (A.26), Markov’s inequality, and bn× supP∈P 1/σ (P) = o(1) imply the prob-
ability of En(P) tends to 1 uniformly in P ∈ Pe

0. Moreover, whenever {Zi}ni=1 ∈ En(P),
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sups∈Ve〈s� Ĝe
n〉 ≤ L̂n and the definition of ĉn(η) imply

P
(

sup
s∈Ve

〈
s�Ge�

n (P)
〉≤ ĉn(η) + σ (P)zη−ε/2|{Zi}ni=1

)
≥ η− ε� (A.28)

Also note that G
e�
n (P) ∼ N(0��e(P)), Theorem 3.6.1 in Bogachev (1998), and As-

sumption 4.3(i) yield G
e�
n (P) = e(e)†

G
e�
n (P) almost surely. Hence, Lemma A.10 im-

plies sups∈Ve〈s�Ge�
n (P)〉 = maxs∈Ee〈s� (e)†

G
e�
n (P)〉. It follows that the distribution of

sups∈Ve〈s�Ge�
n (P)〉 first-order stochastically dominates N(0�σ2(P)) whenever P ∈ Pe

0.
Thus, Ge�

n (P) being independent of {Zi}ni=1 and (A.28) imply that ĉn(η) + σ (P)zη−ε/2 ≥
σ (P)zη−ε whenever {Zi}ni=1 ∈En(P) and P ∈ Pe

0.
Case II: Suppose P ∈ Pi

0 ≡{P ∈ P0 : σ i(s�P) > 0 for some s ∈ E i and σe(s�P) = 0 for all
s ∈ E e}, and set En(P) ≡ E1�n(P) ∩ E2�n(P), where E1n(P) ≡ {AA†{β̂n − β(P)} ∈
range{�i(P)}�Tn = sups∈V i〈A†s� x̂�n〉}} and E2n(P) ≡ {P(|L̂n − L

�
n(P)| > (σ(P)zη−ε)/

2|{Zi}ni=1) ≤ ε}. Note Assumption 4.3(ii) and Lemma A.6 (for E1n(P)), and (A.26), (A.27),
Markov’s inequality, and supP∈P 1/σ (P) = o(b−1

n ) (for E2n(P)), imply the probability of
En(P) tends to 1 uniformly in P ∈ Pi

0.
Since A†AA† =A† by Proposition 6.11.1(5) in Luenberger (1969), AA†β(P) = β(P)

whenever P ∈ P0 and AA†√n{β̂n − β(P)} ∈ range{i} whenever {Zi}ni=1 ∈ E1n(P) by As-
sumption 4.3(i) imply that if {Zi}ni=1 ∈En(P) and s ∈ V i, then

√
n
〈
A†s� x̂�n

〉 = 〈
A†s�A†AA†√n{β̂n −β(P)

}〉+ √
n
〈
A†s�A†β(P)

〉
= 〈
i
(
AA′)†

s�
(
i
)†
AA†√n{β̂n −β(P)

}〉
+ √

n
〈(
AA′)†

s�β(P)
〉
� (A.29)

Since 〈A†s�A†β(P)〉 ≤ 0 for all P ∈ P0, s ∈ V i by Theorem 3.1, Hölder’s inequality implies
(A.29) is bounded above in s ∈ V i. Hence, by Lemmas A.10 and A.11,

sup
s∈(AA′)†V i

〈
is�

(
i
)†
AA†√n{β̂n −β(P)

}〉+ √
n
〈
s�β(P)

〉

= max
s∈E i

〈
is�

(
i
)†
AA†√n{β̂n −β(P)

}〉+ √
n
〈
s�β(P)

〉
� (A.30)

Thus, (A.29) and (A.30) imply S i(P) ≡ {s ∈ E i : 〈is� (i)†AA†√n{β̂n − β(P)} +√
n〈s�β(P)〉 > 0} is such that S i(P) �= ∅ whenever Tn > 0 and {Zi}ni=1 ∈ En(P). More-

over, since
√
n〈s�β(P)〉 ≤ 0 for all s ∈ S i(P) and P ∈ P0 by Theorem 3.1, it follows that if

S i(P) �= ∅, then 〈is� (i)†AA†√n{β̂n − β(P)}〉> 0 for all s ∈ S i(P), and thus by Theo-
rem 3.6.1 in Bogachev (1998), we have

S i(P) �= ∅ and σ i(s�P) > 0 for all s ∈ S i(P) (A.31)

whenever {Zi}ni=1 ∈En(P) and Tn > 0. We next aim to show that in addition,

max
s∈Si (P)

〈
s�AA†β̂r

n

〉= 0 (A.32)

whenever {Zi}ni=1 ∈En(P) and Tn > 0. To this end, note Theorem 3.1 yields that

0 ≥ sup
s∈V i

〈
A†s�A†β̂r

n

〉= sup
s∈(AA′)†V i

〈
s�AA†β̂r

n

〉= max
s∈E i

〈
s�AA†β̂r

n

〉
� (A.33)
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due to Lemmas A.10 and A.11 and A†AA† =A†. Since AA†β(P) = β(P) for all P ∈ P0,
the symmetry of i and AA†√n{β̂n − β(P)} ∈ range{i} whenever {Zi}ni=1 ∈ E1n(P) due
to Assumption 4.3(i), we obtain, by definition of S i(P),

max
s∈E i\Si (P)

〈
s�AA†β̂n

〉 = max
s∈E i ıSi (P)

{〈
is�

(
i
)†
AA†√n{β̂n −β(P)

}〉
+ √

n
〈
s�β(P)

〉}≤ 0� (A.34)

Thus, if we suppose that (A.32) fails to hold, then (A.33), (A.34), S i(P) ⊆ E i, and E i being
finite, imply there is a γ ∈ (0�1) depending on β̂r

n and β̂n satisfying

0 ≥ max
s∈E i

〈
s�AA†

{
(1 − γ)β̂r

n + γβ̂n
}〉= sup

s∈V i

〈
A†s�A†

{
(1 − γ)β̂r

n + γAA†β̂n
}〉
� (A.35)

where the equality follows from Lemmas A.10, A.11, and A†AA† =A†. However, since
β̂r
n ∈ R and AA†β̂n ∈ R, result (A.35) and Theorem 3.1 imply (1 − γ)β̂r

n + γAA†β̂n =
Ax for some x ≥ 0. Moreover, if Tn > 0, then sups∈V i〈A†s� x̂�n〉 > 0 whenever {Zi}ni=1 ∈
En(P) and hence Tn > 0 implies sups∈V i〈A†s� x̂�n −A†β̂r

n〉> 0 due to 〈A†s�A†β̂r
n〉 ≤ 0 for

all s ∈ V i. In particular, if Tn > 0, then sups∈V i |〈A†s� x̂�n −A†β̂r
n〉|> 0 and therefore x̂�n =

A†β̂n,A†AA† =A†, and γ ∈ (0�1) imply sups∈V i |〈A†s� x̂�n−A†{(1−γ)β̂r
n+γAA†β̂n}〉|<

sups∈V i |〈A†s� x̂�n − A†β̂r
n〉|, which is impossible by definition of β̂r

n. Thus, under En(P),
(A.32) holds when Tn > 0.

Results (A.31) and (A.32) imply that, whenever {Zi}ni=1 ∈ En(P) and Tn > 0, there is a
ŝn ∈ V i with (AA′)†ŝn ∈ E i, σ ((AA′)†ŝn�P) > 0, and 0 = λn〈A†ŝn�A

†β̂r
n〉 ≡ Ûn(ŝn). Hence,

the definitions of L�n(P), En(P), and ĉn(η) yield that

P
(〈
A†ŝn�A

†
G

i�
n (P)

〉 ≤ ĉn(η) + σ (P)zη−ε/2|{Zi}ni=1

)
≥ P(L�n(P) ≤ ĉn(η) + σ (P)zη−ε/2|{Zi}ni=1

)
≥ η− ε (A.36)

whenever {Zi}ni=1 ∈ En(P) and Tn > 0. Since G
i�
n (P) ∈ range{i} by Assumption 4.3(i)

and Theorem 3.6.1 in Bogachev (1998), we have 〈A†ŝn�A
†
G

i�
n (P)〉 = 〈i(AA′)†ŝn�

(i)†
G

i�
n (P)〉 and hence 〈A†ŝn�A

†
G

i�
n (P)〉 ∼ N(0� (σ i((AA′)†ŝn�P))2) conditional on

{Zi}ni=1. Since σ i((AA′)†ŝn�P) > 0 implies, by definition, that σ i((AA′)†ŝn�P) > σ (P),
result (A.36) yields ĉn(η) + σ (P)zη−ε/2 ≥ σ (P)zη−ε.

Case III: Suppose P ∈ Pd
0 ≡ {P ∈ P0 : σ j(s�P) = 0 for all s ∈ E j and j ∈{e� i}}. Then, by

Lemma A.6, we may set En(P) ≡{Tn = 0} and the lemma follows. Q.E.D.

LEMMA A.4: If Assumptions 4.1, 4.2, 4.3(i) hold and rn = o(1), then there exists
(Ge

n(P)′�Gi
n(P)′)′ ≡Gn(P) ∼N(0��(P)) satisfying uniformly in P ∈ P:∥∥(e

)†{(
Ip −AA†

)√
n
{
β̂n −β(P)

}−G
e
n(P)

}∥∥
∞ =OP (rn)� (A.37)∥∥(i

)†{
AA†√n{β̂n −β(P)

}−G
i
n(P)

}∥∥
∞ =OP (rn)� (A.38)

PROOF: Set ψ̃(Z�P) ≡ (((e)†ψe(Z�P))′� ((i)†ψi(Z�P))′)′ ∈ R2p, define �̃(P) ≡
EP[ψ̃(Z�P)ψ̃(Z�P)′], and let Sn(P) ∼ N(0� �̃(P)/n). Since ‖a‖2

2 ≤ 2p‖a‖2
∞ for any a ∈
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R2p, Lemma A.8 and Assumptions 4.2(ii)(iii) imply that

EP

[∥∥∥∥ ψ̃(Z�P)√
n

∥∥∥∥
2

2

∥∥∥∥ ψ̃(Z�P)√
n

∥∥∥∥
∞

+ ∥∥Sn(P)
∥∥2

2

∥∥Sn(P)
∥∥

∞

]

� p

n3/2

(
M3

3�� + (
log(1 +p)

)3/2)
�

(A.39)

For Z ∼ N(0� I2p), we obtain by Assumptions 4.1(i), 4.2(i), Lemma 38 in Belloni, Cher-
nozhukov, Chetverikov, and Fernández-Val (2019), and (A.39) that for any δ > 0, there is
a G̃n(P) ∼N(0� �̃(P)) with

P

(∥∥∥∥∥ 1√
n

n∑
i=1

ψ̃(Zi�P) − G̃n(P)

∥∥∥∥∥
∞
> δ

)

� min
t≥0

{P
(‖Z‖∞ > t

)+ t2

δ3

p√
n

{
M3

3�� + (
log(1 +p)

)3/2}

� min
t≥0

{
exp

{
− t2

8 log(1 +p)

}
+ t2

δ3

pM3
3��

(
log(1 +p)

)3/2

√
n

}
� (A.40)

where the final inequality follows from Proposition A.2.1 in van der Vaart and Well-
ner (1996) and E[‖Z‖2

∞] � log(1 + p) by Lemma A.8. Setting t = K
√

log(1 +p), δ3 =
K3pM3

3��(log(1 +p))5/2/
√
n, and taking limits as K ↑ ∞ then yields

∥∥∥∥∥ 1√
n

n∑
i=1

ψ̃(Zi�P) − G̃n(P)

∥∥∥∥∥
∞

=OP
(
M3��p

1/3
(
log(1 +p)

)5/6

n1/6

)
(A.41)

uniformly in P ∈ P. Writing G̃n(P) ≡ (G̃e
n(P)′� G̃i

n(P)′)′, then note G̃
j
n(P) ∈ range{(j)† ×

�j(P)(j)†} almost surely by Theorem 3.6.1 in Bogachev (1998) and Assumption 4.2(iv).
Since (j)†j(j)† = (j)†, it follows (j)†j

G̃
j
n(P) = G̃

j
n(P) for j ∈{e� i}. Setting G

j
n(P) =

j
G̃

j
n(P) for j ∈{e� i}, we then obtain from (A.41), Assumption 4.1(ii), and the definition

of rn that (A.37) and (A.38) indeed hold uniformly in P ∈ P. Moreover, since G̃n(P) ∼
N(0� �̃(P)) and Assumption 4.3(i) implies j(j)†ψj(Z�P) = ψj(Z�P), we obtain from
the definition of �̃(P) and Gn(P) = ((e

G̃
e
n(P))′� (i

G̃
i
n(P))′)′ that Gn(P) ∼N(0��(P))

as desired. Q.E.D.

LEMMA A.5: Let Assumptions 4.1(i), 4.2, 4.3(i), 4.4(i)–(iv) hold. If bn = o(1), then there
is a (Ge�

n (P)′�Gi�
n (P)′)′ ≡ G

�
n(P) ∼N(0��(P)) independent of {Zi}ni=1 satisfying ‖(j)†{Ĝj

n−
G

j�
n (P)}‖∞ =OP (bn) uniformly in P ∈ P for j ∈{e� i}.

PROOF: In what follows, we let ϕ(Z�P) ≡ (ϕe(Z�P)′�ϕi(Z�P)′)′ ∈ R2p, where ϕe(Z�
P) ≡ (e)†ψe(Z�P) and ϕi(Z�P) ≡ (i)†ψi(Z�P).

Step 1: Let {Ui}∞
i=1 be i.i.d., independent of {Zi�Wi�n}ni=1, with Ui uniformly distributed

on (0�1], and set Ri�n to be the rank of Ui in the sample {Ui}ni=1. By Lemma 13.1(iv)
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in van der Vaart (1999), Rn ≡ (R1�n� � � � �Rn�n) is uniformly distributed on the set of all n!
permutations of {1� � � � � n}. Letting d= denote equality in distribution, we then obtain from
Assumption 4.4(i) that

(
1√
n

n∑
i=1

(Wi�n − W̄n)ϕ(Zi�P)�{Zi}ni=1

)
d=
(

1√
n

n∑
i=1

(WRi�n − W̄n)ϕ(Zi�P)�{Zi}ni=1

)
�

Step 2: Next, set τn(u) ≡ inf{c : n−1
∑n

i=1 1{Wi�n − W̄n ≤ c} ≥ u}, ξi�n(P) ≡ n−1/2(ϕ(Zi�
P) − ϕ̄n(P))τn(Ui) for ϕ̄n(P) ≡∑n

i=1ϕ(Zi�P)/n, and

Sn(P) ≡ 1√
n

n∑
i=1

(WRi�n − W̄n)ϕ(Zi�P)� Ln(P) ≡
n∑
i=1

ξi�n(P)� (A.42)

We next couple Ln(S) and Sn(P). Letting Aj denote the jth coordinate of a vector A,
then note Theorem 3.1 in Hájek (1961) (see eq. (3.11) on page 512) yields

E
[(
Sj�n(P) −Lj�n(P)

)2
|{Zi�Wi�n}ni=1

]

� Var
{
Lj�n(P)|{Zi�Wi�n}ni=1

} max
1≤i≤n

|Wi�n − W̄n|(
n∑
i=1

(Wi�n − W̄n)2

)1/2 � (A.43)

Since {Ui}ni=1 are i.i.d. uniform on (0�1], we have E[τn(Ui)|{Zi�Wi�n}ni=1] = 0, which implies
E[ξi�n(P)|{Zi�Wi�n}ni=1] = 0. For σ̂2

n ≡∑n

i=1(Wi�n − W̄n)2/n, we then obtain

Var
{
ξi�n(P)|{Zi�Wi�n}ni=1

}= σ̂2
n

n

(
ϕ(Zi�P) − ϕ̄n(P)

)(
ϕ(Zi�P) − ϕ̄n(P)

)′
� (A.44)

Noting that E[‖V ‖∞] ≤ √
2pmax1≤j≤2p(E[V 2

j ])1/2 for any (V1� � � � � V2p) ≡ V ∈ R2p by
Jensen’s inequality, we then obtain from (A.43), (A.42), and (A.44) that

E
[∥∥Sn(P) −Ln(P)

∥∥
∞|{Zi�Wi�n}ni=1

]

� √
p max

1≤j≤2p

(
σ̂n

n3/2

n∑
i=1

(
ϕj(Zi�P) − ϕ̄j�n(P)

)2

)1/2

×
(

max
1≤i≤n

|Wi�n − W̄n|
)1/2

� (A.45)

Assumptions 4.4(ii)(iii) and Lemma 2.2.10 in van der Vaart and Wellner (1996) im-
ply E[max1≤i≤n|Wi�n − W̄n|] � log(1 + n). Thus, Assumptions 4.4(iii) and 4.2(iii), (A.45),
Fubini’s theorem, and the triangle and Markov’s inequality yield ‖Sn(P) − Ln(P)‖∞ =
OP (

√
p log(1 + n)M3��/n

1/4) uniformly in P ∈ P.
Step 3: We next couple Ln(P) to a conditionally Gaussian vector. Set {Ḡi�n(P)}ni=1

to be mutually independent conditional on {Zi�Wi�n}ni=1 and satisfying Ḡi�n(P) ∼ N(0�
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Var{ξi�n(P)|{Zi�Wi�n}ni=1}). Employing the inequality ‖a‖2
2 ≤ 2p‖a‖2

∞ for any a ∈ R2p to-
gether with Lemma A.8, result (A.44), and direct calculation yield

n∑
i=1

E
[∥∥Ḡi�n(P)

∥∥2

2

∥∥Ḡi�n(P)
∥∥

∞ + ∥∥ξi�n(P)
∥∥2

2

∥∥ξi�n(P)
∥∥

∞|{Zi�Wi�n}ni=1

]

� p log
3
2 (1 +p)√
n

(
1
n

n∑
i=1

|Wi�n|3

)(
1
n

n∑
i=1

{
�3(Zi�P) +� 3

2 (Zi�P)
})

≡ Bn(P)� (A.46)

where�(Zi�P) = ‖ϕ(Zi�P)‖∞. Let B denote the Borel σ-field on R2p, and for anyA ∈ B
and ε > 0, set Aε ≡ {a ∈ R2p : infã∈A ‖a − ã‖∞ ≤ ε}. Strassen’s theorem, Lemma 38 in
Belloni et al. (2019), and result (A.46) then imply, for any δ > 0,

sup
A∈B

{
P
(
Ln(P) ∈A|{Zi�Wi�n}ni=1

)− P
(

1√
n

n∑
i=1

Ḡi�n(P) ∈A3δ|{Zi�Wi�n}ni=1

)}

� min
t≥0

(
2P

(‖Z‖∞ > t
)+ Bn(P)

δ3 t2
)
� (A.47)

where Z ∼ N(0� I2p). Furthermore, Proposition A.2.1 in van der Vaart and Wellner
(1996), Lemma A.8, result (A.46), and Assumptions 4.2(iii) and 4.4(i)(iii) imply

sup
P∈P

EP

[
min
t≥0

(
2P

(‖Z‖∞ > t
)+ Bn(P)

δ3 t2
)]

� min
t≥0

(
exp

{
− t2

C log(1 +p)

}
+ p log3/2(1 +p)M3

3��√
n

t2

δ3

)
� (A.48)

for some C <∞. Hence, p log5/2(1 +p)M3
3��/

√
n≤ b3

n, (A.47), and (A.48) imply

sup
P∈P

EP

[
sup
A∈B

EP

[
1
{
Ln(P) ∈A}− 1

{
1√
n

n∑
i=1

Ḡi�n(P) ∈A3Kbn

} ∣∣∣∣∣{Zi�Wi�n}ni=1

]]

� min
t≥0

(
exp

{
− t2

C log(1 +p)

}
+ t2

K3 log(1 +p)

)
≤ exp

{
−K

2

C

}
+ 1
K
� (A.49)

where K > 0 is arbitrary and in the final inequality we set t =K√log(1 +p). Theorem 4
in Monrad and Philipp (1991) and (A.49) imply there is a Ḡn(P) satisfying ‖Ln(P) −
Ḡn(P)‖∞ = OP (bn) uniformly in P ∈ P and Ḡn(P) ∼N(0�

∑n

i=1 Var{ξi�n(P)|{Zi�Wi�n}ni=1})
conditional on {Zi�Wi�n}ni=1.

Step 4: We next couple Ḡn(P) to a Gaussian G̃
�
n(P) independent of {Zi�Wi�n}ni=1. To this

end, note that EP[ϕ(Z�P)] = 0 and supP∈P max1≤j≤2p ‖ϕj(·�P)‖P�2 being bounded in n by
Assumptions 4.2(i)(ii), and ‖aa′‖o�2 = ‖a‖2

2 for any a ∈ R2p imply

sup
P∈P

EP
[∥∥ϕ̄n(P)ϕ̄n(P)′∥∥

o�2

]= sup
P∈P

EP
[∥∥ϕ̄n(P)

∥∥2

2

]
� p

n
� (A.50)



322 FANG, SANTOS, SHAIKH, AND TORGOVITSKY

Jensen’s inequality, ‖ϕ(Zi�P)‖2
2 ≤ 2p�2(Zi�P), and Assumption 4.4(iv) imply

sup
P∈P

EP
[
max
1≤i≤n

∥∥ϕ(Zi�P)
∥∥2

2

]
� sup

P∈P
p
(
EP

[
max
1≤i≤n

�2q(Zi�P)
])1/q ≤ pn1/qMq��2 �

Setting �(P) ≡ EP[ϕ(Z�P)ϕ(Z�P)′], we then note that bn = o(1), Theorem E.1 in Kato
(2013), ‖�(P)‖o�2 being uniformly bounded in n and P ∈ P by Assumption 4.2(ii) and
definition of ϕ(Z�P), and Markov’s inequality yield that∥∥∥∥∥1

n

n∑
i=1

ϕ(Zi�P)ϕ(Zi�P)′ −�(P)

∥∥∥∥∥
o�2

=OP
({
p log(1 +p)n1/qMq��2

n

}1/2)
(A.51)

uniformly in P ∈ P. Setting �̂n(P) ≡ ∑n

i=1 Var{ξi�n(P)|{Zi�Wi�n}ni=1}, we then obtain from
(A.44), (A.50), (A.51), ‖�(P)‖o�2 being bounded in n and P ∈ P and Assumption 4.4(iii)
imply, uniformly in P ∈ P, that ‖�̂n(P) − �(P)‖o�2 = OP ({p log(1 + p)n1/qMq��2/n}1/2).
Since Ḡn(P) ∼ N(0� �̂n(P)) conditional on {Zi�Wi�n}ni=1, applying Lemma A.7 with Vn =
{Zi�Wi�n}ni=1 implies there is a G̃�

n(P) ∼N(0��(P)) independent of {Zi�Wi�n}ni=1 satisfying
uniformly in P ∈ P ‖Ḡn(P) − G̃

�
n(P)‖∞ =OP ((p log3(1 +p)n1/qMq��2/n)1/4).

Step 5: By Steps 2, 3, and 4, there exists a Gaussian G̃
�
n(P) that is independent of

{Zi�Wi�n}ni=1 and satisfies ‖Sn(P) − G̃
�
n(P)‖∞ = OP (bn) uniformly in P ∈ P. Since G̃

�
n(P)

is independent of {Zi}ni=1, the representation in Step 1 and Lemma 2.11 in Dudley and
Philipp (1983) imply that there exists a (Ğe�

n (P)′� Ği�
n (P)′)′ ≡ Ğ

�
n(P) ∼ N(0��(P)) inde-

pendent of {Zi}ni=1 and such that uniformly in P ∈ P∥∥∥∥∥ 1√
n

n∑
i=1

(Wi�n − W̄n)ϕ(Zi�P) − Ğ
�
n(P)

∥∥∥∥∥
∞

=OP (bn)� (A.52)

To conclude, set G
j�
n (P) ≡ j

Ğ
j�
n (P) for j ∈{e� i} and G

�
n(P) ≡ (Ge�

n (P)′�Gi�
n (P)′)′. Since

j(j)†ψj(Z�P) = ψj(Z�P) for j ∈{e� i} by Assumption 4.3(i), it follows from �(P) ≡
EP[ϕ(Z�P)ϕ(Z�P)′] and the definition of ϕ that G

�
n(P) ∼ N(0��(P)). Furthermore,

Ğ
�
n(P) ∈ range{�(P)} by Theorem 3.6.1 in Bogachev (1998), and hence Ğ

j�
n (P) =

(j)†j
Ğ

j�
n (P) = (j)†

G
j�
n (P) for j ∈{e� i}. The lemma follows from (A.52), the definition

of ϕ(Z�P), and Assumption 4.4(i). Q.E.D.

LEMMA A.6: Let Assumptions 4.2(iv), 4.3, 4.4(v) hold, and for j ∈{e� i}, define the sets
Dj

0 ≡{P ∈ P0 : σ j(s�P) = 0 for all s ∈ E j}. Then:

lim inf
n→∞

inf
P∈De

0

P
(

sup
s∈Ve

∣∣√n〈s� β̂n −Ax̂�n
〉∣∣= sup

s∈Ve

∣∣〈s� Ĝe
n

〉∣∣= 0
)

= 1�

lim inf
n→∞

inf
P∈Di

0

P
(

sup
s∈V i

∣∣〈A†s�A†
Ĝ

i
n

〉∣∣= sup
s∈V i

∣∣〈A†s�A†β(P) − x̂�n
〉∣∣= sup

s∈V i

〈
A†s� x̂�n

〉= 0
)

= 1�

PROOF: Theorem 3.6.1 in Bogachev (1998) and Assumption 4.3(i) imply G
e
n(P) ∈

range{�e(P)} ⊆ range{e} almost surely. Hence, e(e)†
G

e
n(P) = G

e
n(P) almost surely

and e being symmetric by Assumption 4.2(iv) imply, for any P ∈ De
0,

sup
s∈Ve

∣∣〈s�Ge
n(P)

〉∣∣= sup
s∈Ve

∣∣〈es�
(
e

)†
G

e
n(P)

〉∣∣= max
s∈Ee

∣∣〈s� (e
)†
G

e
n(P)

〉∣∣= 0� (A.53)
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where the second equality follows from Lemma A.10. Result (A.53), Assumption 4.3(ii),
and the support of G

e
n(P) being equal to range{�e(P)} by Theorem 3.6.1 in Bogachev

(1998) imply that with probability tending to 1 uniformly in P ∈ De
0,

sup
s∈Ve

∣∣√n〈s� β̂n −Ax̂�n
〉∣∣= sup

s∈Ve

∣∣〈s� (Ip −AA†
)√
n
{
β̂n −β(P)

}〉∣∣= 0� (A.54)

Identical arguments but relying on Assumption 4.4(v) instead of 4.3(i) also yield that
sups∈Ve |〈s� Ĝe

n〉|= 0 with probability tending to 1 uniformly in P ∈ De
0.

To establish the second claim, we note that similar arguments andA†AA†{β̂n−β(P)}=
x̂�n −A†β(P) by Proposition 6.11.1(5) in Luenberger (1969) imply

sup
s∈V i

∣∣〈A†s� x̂�n −A†β(P)
〉∣∣= sup

s∈V i

∣∣〈A†s�A†
Ĝ

i
n

〉∣∣= 0 (A.55)

with probability tending to 1 uniformly in P ∈ Di
0. To conclude, we note that 〈A†s�

A†β(P)〉 ≤ 0 for any P ∈ P0 and s ∈ V i by Theorem 3.1. Hence, 0 ∈ V i and (A.55) im-
ply 0 ≤ sups∈V i〈A†s� x̂�n〉 ≤ sups∈V i |〈A†s� x̂�n −A†β(P)〉|= 0 with probability tending to 1
uniformly in P ∈ Di

0 as well. Q.E.D.

LEMMA A.7: Let {Vn}∞
n=1 be random variables with distribution parameterized by P ∈ P

and Ḡn(P) ∈ Rdn be such that Ḡn(P) ∼N(0� �̂n(P)) conditionally on Vn. If there exist non-
random matrices �n(P) such that ‖�̂n(P) − �n(P)‖o�2 = OP (δn) uniformly in P ∈ P, then
there exists a G

�
n(P) ∼N(0��n(P)) independent of Vn and satisfying ‖Ḡn(P) −G

�
n(P)‖∞ =

OP (
√

log(1 + dn)δn) uniformly in P ∈ P.

PROOF: Let {ν̂j(P)}dnj=1 and {λ̂j(P)}dnj=1 denote the unit length eigenvectors and eigen-

values of �̂n(P). For some Ndn ∼N(0� Idn) independent of (Vn� Ḡn(P)), set

Zn(P) ≡
∑

j:λ̂j (P) �=0

ν̂j(P)
ν̂j(P)′

Ḡn(P)

λ̂1/2
j (P)

+
∑

j:λ̂j (P)=0

ν̂j(P)
(
ν̂j(P)′Ndn

)
�

Since Ndn is independent of (Vn� Ḡn(P)), it follows Zn(P) ∼ N(0� Idn) conditionally on
Vn and hence is independent of Vn. We set G

�
n(P) ≡ �1/2

n (P)Zn(P), which is indepen-
dent of Vn. By Theorem 3.6.1 in Bogachev (1998), Ḡn(P) ∈ range{�̂n(P)} and there-
fore the spectral decomposition of �̂1/2 implies �̂1/2

n (P)Zn(P) = Ḡn(P). Setting �̂n(P) ≡
�̂1/2
n (P) − �1/2

n (P) and letting �̂(j�k)
n (P) be its (j�k) entry, we obtain from Lemma A.8,

sup‖v‖2=1〈v�a〉 = ‖a‖2 for any a, and ‖ · ‖∞ ≤ ‖ · ‖2 that

E
[∥∥Ḡn(P) −G

�
n(P)

∥∥
∞|Vn

]
�
√

log(1 + dn) max
1≤j≤dn

(
dn∑
k=1

(
�̂(j�k)
n (P)

)2

)1/2

=
√

log(1 + dn) sup
‖v‖2=1

∥∥�̂n(P)v
∥∥

∞

≤
√

log(1 + dn)
∥∥�̂n(P)

∥∥
o�2
� (A.56)
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Hence, Fubini’s theorem, Markov’s inequality, and (A.56) yield, for any C > 0,

sup
P∈P

P
(∥∥Ḡn(P) −G

�
n(P)

∥∥
∞ >C

2
√

log(1 + dn)δn and
∥∥�̂n(P)

∥∥
o�2

≤ C√δn)

≤ sup
P∈P

EP

[∥∥�̂n(P)
∥∥
o�2

C2
√
δn

1
{∥∥�̂n(P)

∥∥
o�2

≤ C√δn}
]

≤ 1
C
� (A.57)

Since ‖�̂n(P)‖2
o�2 ≤ ‖�̂n(P) − �(P)‖o�2 by Theorem X.1.1 in Bhatia (1997), (A.57) and

‖�̂n(P) −�(P)‖o�2 =OP (δn) uniformly in P ∈ P imply the lemma. Q.E.D.

LEMMA A.8: LetZ ≡ (Z1� � � � �Zp) ∈ Rp be jointly Gaussian withE[Zj] = 0 andE[Z2
j ] ≤

σ2 for all 1 ≤ j ≤ p. It then follows that for any q ≥ 1, there exists a constant Kq <∞ such
that E[‖Z‖q∞] ≤Kq(σ

√
log(1 +p))q.

PROOF: The result is well known and follows from Corollary 2.2.8 and Proposition
A.2.4 in van der Vaart and Wellner (1996). Q.E.D.

LEMMA A.9: Let (Z1� � � � �Zd)′ ∈ Rd be Gaussian with E[Zj] ≥ μ, Var{Zj} = σ2 > 0 for
all j, and set S ≡ max1≤j≤d Zj and m ≡ med{S}. Then, the distribution of S is absolutely
continuous with density bounded by (2/σ) max{(m − (μ∧ 0))/σ�1}.

PROOF: First, assume μ≥ 0 and let F and � denote the c.d.f. of S and a standard nor-
mal. Theorem 11.2 in Davydov, Lifshits, and Smorodina (1998) implies F is absolutely
continuous and its density satisfies F ′(r) = q(r)�′(r/σ) for some nondecreasing q. More-
over,

q(r)σ
(
1 −�(r/σ)

)≤
∫ ∞

r

q(u)�′(u/σ) du=
∫ ∞

r

F ′(u) du= P(S ≥ r) ≤ 1� (A.58)

due to the function q being nondecreasing. Hence, F ′(r) = q(r)�′(r/σ), result (A.58),
and Mill’s inequality implying �′(r)/(1 −�(r)) ≤ 2 max{r�1} for all r ∈ R (see, e.g., page
64 in Chernozhukov, Chetverikov, and Kato (2014)) yield the bound

F ′(r) ≤�′(r/σ)/
(
σ
(
1 −�(r/σ)

))≤ (2/σ) max{r/σ�1}� (A.59)

Next, note P(S ≤ m +η) ≥ P(maxj(Zj −E[Zj]) ≤ η) > 0 for any η> 0 due to m ≥E[Zj]
for all j. As a result, Theorem 11.2 in Davydov, Lifshits, and Smorodina (1998) implies q
is continuous at any r >m, which together with F ′(r) = q(r)�′(r/σ) establishes F is dif-
ferentiable (with derivative F ′) at any r >m. Setting �≡�−1 ◦ F , then observe F =� ◦ �
and hence, at any r >m, we obtain F ′(r) =�′(�(r))�′(r) for �′ the derivative of �. How-
ever, �′ is decreasing since � is concave by Proposition 11.3 in Davydov, Lifshits, and
Smorodina (1998), while �′(�(r)) is decreasing on [m�+∞) due to �′ being decreas-
ing on [0�∞), �(r) ∈ [0�∞) for any r >m, and � being nondecreasing. Therefore, F ′ is
decreasing on (m�+∞), which together with (A.59) yields

sup
r∈(m�+∞)

F ′(r) = lim sup
r↓m

F ′(r) ≤�′(m/σ)/(σ
(
1 −�(m/σ)

)
� (A.60)
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Since (A.59) implies F ′ is bounded by 2 max{m/σ�1}/σ on (−∞�m] and (A.60) implies
the same bound on (m�+∞), the lemma follows when μ ≥ 0. If μ < 0, then set S =
(maxj Zj −μ) +μ and apply our first bound to (maxj Zj −μ). Q.E.D.

LEMMA A.10: Let C ⊆ Rk be a nonempty polyhedral set containing no lines and E denote
its extreme points. Then: E �= ∅ and for any y ∈ Rk such that supc∈C〈c� y〉<∞, it follows that
supc∈C〈c� y〉 = maxc∈E〈c� y〉.

PROOF: Follows from Corollary 32.3.4 in Rockafellar and Tyrrell (1970). Q.E.D.

LEMMA A.11: Let V i be as defined in (9). Then, (AA′)†V i is a nonempty polyhedral set,
contains no lines, and zero is one of its extreme points.

PROOF: Since 0 ∈ V i and V i is polyhedral, Theorem 19.3 in Rockafellar and Tyrrell
(1970) implies (AA′)†V i is nonempty and polyhedral. Next, note that A′(AA′)† =A† by
Proposition 6.11.1(9) in Luenberger (1969), and hence since any v ∈ (AA′)†V i satisfies
v= (AA′)†s for some s ∈ V i, we obtain for any v= (AA′)†s that

A′v=A′(AA′)†
s =A†s ≤ 0� (A.61)

For N(A′)⊥ the orthocomplement to the null space of A′, note (AA′)†V i ⊆N(A′)⊥ be-
cause (AA′)† = (A′)†A†. Thus, if ±v ∈ (AA′)†V i, then (A.61) implies A′v = 0, which
together with (AA′)†V i ⊆ N(A′)⊥ yields v ∈ N(A′) ∩N(A′)⊥ = {0}, implying (AA′)†V i

contains no lines. Similarly, if 0 = λv1 + (1 − λ)v2 with v1� v2 ∈ (AA′)†V i and λ ∈ (0�1),
then (A.61) implies A′v1 = A′v2 = 0, which together with (AA′)†V i ⊆ N(A′)⊥ yields
v1 = v2 = 0, implying zero is an extreme point. Q.E.D.
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