
Supplemental Appendix

Not Intended for Publication

This Supplemental Appendix is organized as follows. Section M.1 contains

computational details on the implementation of our test. Section M.2 contains a

Monte Carlo experiment examining the performance of our proposed procedure.

M.1 Computational Details

In this appendix, we provide details on how we compute our test statistic, Tn,

defined in (11), the restricted estimator β̂r
n, defined in (15), and obtain a critical

value. One computational theme that we found important in our simulations is

that the pseudoinverse A† can be poorly conditioned. As we show below, however,

it is possible to implement our procedure without computing A† explicitly.

First, we need to select an estimator x̂?n. In the mixed logit simulation in

Section M.2, the parameter β(P ) can be decomposed into β(P ) = (βu(P )′, β′k)′,

where βu(P ) ∈ Rpu and βk ∈ Rpk is a known constant for all P ∈ P0. Similarly,

we decompose any b ∈ Rp into b = (b′u, b
′
k)′ with bu ∈ Rpu and bk ∈ Rpk , and

partition the matrix A into the corresponding submatrices Au (dimension pu × d)

and Ak (dimension pk × d). In our simulations, we then set x̂?n to be a solution to

min
x∈Rd

(β̂u,n − Aux)′Ξ−1(β̂u,n − Aux) s.t. Akx = βk, (M.1)

where β̂n = (β̂′u,n, β
′
k)′ and Ξ is an estimate of the asymptotic variance matrix of

β̂u,n. While the solution to (M.1) may not be unique, any two minimizers x1 and

x2 of (M.1) must satisfy Ax1 = Ax2. Since in our reformulations below x̂?n only

enters through Ax̂?n, the specific choice of minimizer in (M.1) is immaterial.

Throughout, we let Ωe be the sample standard deviation matrix of β̂n. Note

that, since β̂n = (β̂′u,n, β
′
k)′ and βk is non-stochastic, Ωe has the form

Ωe =

[
Ξ1/2 0

0 0

]
. (M.2)

We further let Ωi be the sample standard deviation of Ax̂?n, although this choice

of studentization plays no special computational role in what follows.
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Consider the first component of Tn (see (11)), which we reproduce here as

T e
n ≡ sup

s∈Ve

√
n〈s, β̂n − Ax̂?n〉 where Ve ≡ {s ∈ Rp : ‖Ωes‖1 ≤ 1}. (M.3)

As in the main text, the superscript “e” alludes to the relation to the “equality”

condition in Theorem 3.1. As noted in the main text, β̂n = Ax̂?n and hence T e
n = 0

whenever A is full rank and d ≥ p. In other cases, we use the fact that x̂?n, as the

solution to (M.1), must satisfy Akx̂
?
n = βk, and that our choice of Ωe in (M.2) has

Ξ1/2 as its upper left block. From these observations, we deduce that

T e
n = sup

su∈Rpu

√
n〈su, β̂u,n − Aux̂

?
n〉 s.t. ‖Ξ1/2su‖1 ≤ 1

= ‖
√
nΞ−1/2(β̂u,n − Aux̂

?
n)‖∞. (M.4)

Thus, T e
n can be computed by taking the maximum of a vector of length pu.

The second component of Tn, defined in (11), is reproduced here as

T i
n ≡ sup

s∈V i

√
n〈A†s, x̂?n〉 where V i ≡ {s ∈ Rp : A†s ≤ 0 and ‖Ωi(AA′)†s‖1 ≤ 1},

(M.5)

and the superscript “i” alludes to the relation to the “inequality” condition in

Theorem 3.1. To compute T i
n without explicitly using A†, we first note

A† = A′(AA′)†, (M.6)

see, e.g., Proposition 6.11.1(9) in Luenberger (1969). Then, we observe that

range{(AA′)†} = null{AA′}⊥ = range{AA′} = range{A}, (M.7)

where the first equality is a property of pseudoinverses, see Luenberger (1969, pg.

164). The second equality is a standard result in linear algebra, see Theorem

6.6.1 in Luenberger (1969). This result is also used in the third equality, which

uses the following logic: if t = As for some s ∈ Rp, then also t = As1, where

s1 ∈ null{A}⊥ = range{A′} is determined from the orthogonal decomposition

s = s0 + s1 with s0 ∈ null{A}, and hence t ∈ range{AA′} implying range{A} ⊆
range{AA′}. Since range{AA′} ⊆ range{A} the third equality follows. Thus,

T i
n = sup

s∈Rp

√
n〈A′(AA′)†s, x̂?n〉 s.t. A′(AA′)†s ≤ 0 and ‖Ωi(AA′)†s‖1 ≤ 1,
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= sup
x∈Rd

√
n〈A′Ax, x̂?n〉 s.t. A′Ax ≤ 0 and ‖ΩiAx‖1 ≤ 1,

= sup
x∈Rd,s∈Rp

√
n〈s, Ax̂?n〉 s.t. Ax = s, A′s ≤ 0 and ‖Ωis‖1 ≤ 1, (M.8)

where the first equality follows from (M.6), the second from (M.7), and in the

third we substituted s = Ax. The final program in (M.8) can be written explicitly

as a linear program by introducing non-negative slack variables, so that

T i
n = sup

x∈Rd,s∈Rp,φ+∈Rp
+,φ
−∈Rp

+

√
n〈s, Ax̂?n〉

s.t. Ax = s, A′s ≤ 0, 〈1p, φ+〉+ 〈1p, φ−〉 ≤ 1, φ+ − φ− = Ωis, (M.9)

where 1p ∈ Rp is the vector with all coordinates equal to one. Note that if d ≥ p

and A has full rank, then the constraint Ax = s is redundant since Ax ranges

across all of Rp as x varies across Rd. In these cases, the constraint Ax = s

together with the variable x can be entirely removed from the linear program in

(M.9). Taking the maximum of (M.4) and (M.9) yields our test statistic Tn.

Turning to our bootstrap procedure, we first show how to solve (15) to find

β̂r
n. The optimization problem to solve is here reproduced as:

min
x̃∈Rd

+,b=(b′u,b
′
k)′

{
sup
s∈V i

|〈A†s, x̂?n − A†b〉|
}

s.t. bk = βk, Ax̃ = b. (M.10)

With probability tending to one, the inner problem is finite when evaluated at

b = β(P ), and hence we may restrict attention to b for which the inner problem is

finite. Moreover, the inner problem has the same structure as (M.5), but with x̂?n

replaced by x̂?n − A†b. Hence, applying the same logic employed in (M.8) allows

us to rewrite the inner problem in (M.10) as being equal to

sup
x∈Rd

|〈A′Ax, x̂?n − A†b〉| s.t. A′Ax ≤ 0 and ‖ΩiAx‖1 ≤ 1. (M.11)

It is in turn possible to establish that the optimization problem in (M.11) equals

sup
x∈Rd

〈A′Ax, x̂?n − A†b〉 s.t. x ∈ co{v ∈ Rd : A′Av ≤ 0, ‖ΩiAv‖1 ≤ 1}, (M.12)

where co{·} denotes the convex hull of a set. By introducing slack variables as in
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(M.9), we may rewrite (M.12) explicitly as a linear program

sup
v1,v2∈Rd,φ+1 ,φ

−
1 ,φ

+
2 ,φ
−
2 ∈R

p
+,a1,a2∈R+

〈A′A(v1 + v2), x̂?n − A†b〉

s.t. A′Av1 ≤ 0, − A′Av2 ≤ 0, 〈1p, φ+
1 〉+ 〈1p, φ−1 〉 ≤ a1, 〈1p, φ+

2 〉+ 〈1p, φ−2 〉 ≤ a2,

φ+
1 − φ−1 = ΩiAv1, φ

+
2 − φ−2 = ΩiAv2, a1 + a2 = 1. (M.13)

In turn, the dual of the linear program in (M.13) can be shown to be equal to

inf
φ0∈R,φs1,φs2∈Rd

+,φ
n
1 ,φ

n
2∈R+,φe1,φ

e
2∈Rp

φ0 s.t. A′Aφs1 − A′Ωiφe1 = A′A(x̂?n − A†b),

− A′Aφs2 − A′Ωiφe2 = A′A(x̂?n − A†b), φn11p + φe1 ≥ 0, φn11p − φe1 ≥ 0,

φn21p + φe2 ≥ 0, φn21p − φe2 ≥ 0, − φn1 + φ0 ≥ 0, − φn2 + φ0 ≥ 0. (M.14)

Let V ≡ range{AA′} and ΠV (b) denote the ‖ · ‖2-projection of b onto V . Then

note that A† = A′(AA′)† (see Proposition 6.11.1(8) in Luenberger (1969)) implies

A′AA†b = A′AA′(AA′)†b = A′ΠV b. However, by result (M.7), V ≡ range{AA′} =

range{A} = null{A′}⊥, where the final equality follows by Theorem 6.6.1 in Lu-

enberger (1969). Hence, A′ΠV b = A′b and (M.14) equals

inf
φ0∈R,φs1,φs2∈Rd

+,φ
n
1 ,φ

n
2∈R+,φe1,φ

e
2∈Rp

φ0 s.t. A′Aφs1 − A′Ωiφe1 = A′(Ax̂?n − b),

− A′Aφs2 − A′Ωiφe2 = A′(Ax̂?n − b), φn11p + φe1 ≥ 0, φn11p − φe1 ≥ 0,

φn21p + φe2 ≥ 0, φn21p − φe2 ≥ 0, − φn1 + φ0 ≥ 0, − φn2 + φ0 ≥ 0. (M.15)

Substituting (M.15) back into the inner problem in (M.10) then yields a single

linear program that determines β̂r
n. Given β̂r

n it is then straightforward to compute

our bootstrap statistic. For instance, in the simulations in Section M.2, we let

Ĝe
n =
√
n{(β̂b,n − Ax̂?b,n)− (β̂n − Ax̂?n)} Ĝi

n =
√
nA(x̂?b,n − x̂?n)

where β̂b,n and x̂?b,n are nonparametric bootstrap analogues to β̂n and x̂?n. Arguing

as in result (M.4) it is then straightforward to show that

sup
s∈Ve

〈s, Ĝe
n〉 = ‖

√
nΞ−1/2Ĝe

n‖∞. (M.16)

In analogy to (M.4), (M.16) equals zero whenever A is full rank and d ≥ p. Next,

we may employ the same arguments as in (M.8) and (M.9) and note AA†Ĝi
n = Ĝi

n
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and AA†β̂r
n = β̂r

n because Ĝi
n and β̂r

n are on the range of A to obtain

sup
s∈V i

〈A†s,A†(Ĝi
n +
√
nλnβ̂

r
n)〉

= sup
x∈Rd,s∈Rp,φ+∈Rp

+,φ
−∈Rp

+

〈s, Ĝi
n +
√
nλnβ̂

r
n〉

s.t. Ax = s, A′s ≤ 0, 〈1p, φ+〉+ 〈1p, φ−〉 ≤ 1, φ+ − φ− = Ωis. (M.17)

As in (M.9), we note that if A is full rank and d ≥ p, then the constraint Ax = s

and the variable xmay be dropped from (M.17). The critical value is then obtained

by computing the 1 − α quantile of the maximum of (M.16) and (M.17) across

bootstrap iterations. Finally, we note that the problem (M.23) used to determine

λb
n is equivalent to (M.9) with Ax̂?n replaced by Ĝi

n.

M.2 Simulations with a Mixed Logit Model

M.2.1 The Model

Example 2.1 is an example of a class of mixture models considered by Fox et al.

(2011). A simpler example with the same structure is a static, binary choice logit

with random coefficients. In this model, a consumer chooses Y ∈ {0, 1} by

Y = 1 {C0 + C1W − U ≥ 0} ,

where W is an observed variable which we will think of as the price of buying a

good (Y = 1), and V ≡ (C0, C1) and U are latent variables. The unobservable U

is assumed to follow a standard logistic distribution, independently of (V,W ).

A consumer of type v = (c0, c1) facing price w buys the good with probability

P (Y = 1|W = w, V = v) =
1

1 + exp(−c0 − c1w)
≡ `(w, v). (M.18)

Bajari et al. (2007) and Fox et al. (2011) assume V is independent of W and

approximate the distribution of V using a discrete distribution with known support

points (v1, . . . , vd) and unknown respective probabilities x ≡ (x1, . . . , xd). Under
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these assumptions, (M.18) can be aggregated into a conditional moment equality:

P (Y = 1|W = w) =
d∑
j=1

xj`(w, vj). (M.19)

A natural quantity of interest in this model is the price elasticity of purchase

probability. For a consumer of type v = (c0, c1) facing price w̄, this is

ε(v, w̄) ≡ ∂

∂w
`(v, w)

∣∣∣
w=w̄
× w̄

`(w̄, v)
= c1w̄(1− `(w̄, v)).

The cumulative distribution function (c.d.f.) of this elasticity is

Fε(t|w̄) ≡ P (ε(V, w̄) ≤ t) =
d∑
j=1

1{ε(vj, w̄) ≤ t}xj ≡ a(t, w̄)′x, (M.20)

where a(t, w̄) ≡ (a1(t, w̄), . . . , ad(t, w̄))′ with aj(t, w̄) ≡ 1{ε(vj, w̄) ≤ t}. We take

the c.d.f. Fε(·|w̄) as our parameter of interest in the discussion ahead.

M.2.2 Data Generating Processes

In our simulations we generate data from a class of mixed logit models param-

eterized as follows. The distribution of W is uniform over p − 2 evenly spaced

points between 0 and 2, inclusive. The known support of C0 is generated by tak-

ing a Sobol sequence of length
√
d and rescaling it to lie in [.5, 1.0]. Similarly, the

support of C1 is a Sobol sequence of length
√
d rescaled to [−3, 0]. The distribu-

tion of V ≡ (C0, C1) is taken to be uniform over the product of the two marginal

supports, so that it has d support points.

Fox et al. (2012) provide identification results that apply to the binary mixed

logit model. However, their conditions require W to be continuously distributed.

When W is discretely distributed, one might expect the distributions of V and thus

of ε(V, w̄) are only partially identified. We explore this conjecture computationally.

We denote the identified set for the distribution of V as

X?(P ) ≡ {x ∈ Rd
+ :

d∑
j=1

xj = 1,
d∑
j=1

xj`(w, vj) = P (Y = 1|W = w) for all w ∈ W},
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Figure 1: Bounds on the distribution of price elasticity Fε(t|1)
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These plots are based on the data generating processes described in Section M.2.2. The solid
black line is the actual value of Fε(t|1). The lighter color is A?(t, 1|P ) when the support of W
has sixteen points. The darker color is the same set when the support of W has only four points.
The dotted vertical is the value t = −1 used in the Monte Carlo simulations in Section M.2.4.

whereW is the support of W . In addition, for any t ∈ R, we denote the identified

set for Fε(t|w̄) by A?(t, w̄|P ), which simply equals the projection of X?(P ) under

the linear map introduced in (M.20):

A?(t, w̄|P ) ≡ {a(t, w̄)′x : x ∈ X?(P )} .

Since X?(P ) is a system of linear equalities and inequalities, and x 7→ a(t, w̄)′x is

scalar-valued and linear, A?(t, w̄|P ) is a closed interval (see, e.g. Mogstad et al.,

2018, for a similar argument). The left endpoint of this interval is given by

min
x∈Rd

+

a(t, w̄)′x s.t.
d∑
j=1

xj = 1,
d∑
j=1

xj`(w, vj) = P (Y = 1|W = w) for all w ∈ W ,

(M.21)

and the right endpoint is equal to its maximization counterpart.

Figure 1 depicts A?(t, w̄|P ) as a function of t for w̄ = 1. The outer and inner

bands depict the identified set when the support of W has four and sixteen points,

respectively, while the solid line indicates the distribution under the actual data

generating process. The identified sets are non-trivial and widen with the number
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of support points d for the unobservable V . For d = 16, the bounds when W has

sixteen support points are narrow, but numerically distinct from a point. This is

because the system of moment equations that defines X?(P ), while known to be

nonsingular in principle, is sufficiently close to singular to matter numerically.

M.2.3 Test Implementation

As in Example 2.1, we may use our results to test whether a hypothesized γ ∈ R

belongs to the identified set for Fε(t|w̄). Using (M.19) and recalling W was set to

have p− 2 support points, we may then map such hypothesis into (1) by setting

β(P ) =



P (Y = 1|W = w1)
...

P (Y = 1|W = wp−2)

1

γ


A =



`(w1, v1) · · · `(w1, vd)
...

...
...

`(wp−2, v1) · · · `(wp−2, vd)

1 · · · 1

a1(t, w̄) · · · ad(t, w̄)


.

We take β̂n ≡ (β̂u,n, 1, γ)′ ∈ Rp, where β̂u,n is the sample analogue to the first p−2

components of β(P ). We set x̂?n = A†β̂n for designs with d ≥ p, and let

x̂?n ≡ arg min
x∈Rd

(β̂u,n − Aux)′Ξ−1(β̂u,n − Aux) s.t.
d∑
j=1

x = 1 and a(t, w̄)′x = γ,

when d < p, where Au corresponds to the first p − 2 rows of A and Ξ is the

sample analogue estimator of asymptotic variance matrix of β̂u,n. We let Ωe be the

sample standard deviation matrix of β̂n, and Ωi be the sample standard deviation

of
√
nAx̂?n computed from 250 draws of the nonparametric bootstrap.

We explore two rules for selecting λn. To motivate them, we note that an

important theoretical restriction on λn is that, uniformly in P ∈ P0, it satisfy

λn
√
n sup
s∈V i

〈A†s, A†A(x̂?n − x?(P ))〉 = oP (1); (M.22)

see Lemma A.1. Employing our coupling
√
nA(x̂?n−x?(P )) ≈ Gi

n(P ) and Ωi being

an estiamte of the standard deviation matrix of Gi
n(P ) suggests selecting λn to sat-

isfy λn
√

log(e ∨ p) = o(1) – here a∨b ≡ max{a, b}. For a concrete choice of λn, we

rely on the law of iterated logarithm and let λr
n = 1/

√
log(e ∨ p) log(e ∨ log(e ∨ n)).

8



Figure 2: Null rejection probabilities for (nearly) point-identified designs

d = 4, p = 6 d = 4, p = 18 d = 16, p = 18
n
=

200
0

n
=

400
0

0 .05 .10 .15 .20 0 .05 .10 .15 .20 0 .05 .10 .15 .20

0
.05
.10
.15
.20
.25
.30
.35
.40
.45
.50
.55

0
.05
.10
.15
.20
.25
.30
.35
.40
.45
.50
.55

Nominal level

R
e
je
c
ti
o
n

p
ro

b
a
b
il
it
y

Test

BS Wald BS Wald (RC) FSST FSST (RoT)

The dotted line is the 45 degree line. “FSST” refers to the test developed in this paper with λbn,
whereas “FSST (RoT)” uses the rule of thumb choice λrn. “BS Wald” corresponds to a Wald
test using bootstrap estimates of the standard errors. “BS Wald (RC)” is the same procedure
but with standard errors based on bootstrapping with a re-centered GMM criterion. The null
hypothesis is that Fε(−1|1) is equal to its true value. In the case of d = 16, p = 18, which is
set identified but with a very narrow identified set, we test the null hypothesis that Fε(−1|1) is
equal to the lower bound of the identified set.

As an alternative to λr
n, we employ the bootstrap to approximate the law of (M.22).

In particular, for some δn ↓ 0 we let λb
n ≡ min{1, 1/τ̂n(1 − δn)} where τ̂n(1 − δn)

denotes the 1− δn quantile of

sup
s∈V i

〈A†s, A†Ĝi
n〉 (M.23)

conditional on the data. For concreteness we let δn = 1/
√

log(e ∨ log(e ∨ n)).

In Appendix M.1, we describe the computation of our test in more detail. In

particular, we show how to reformulate all optimization problems into linear pro-

gramming problems that do not require explicitly computing A†. An R package for

implementing our test is available at https://github.com/conroylau/lpinfer.
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Table 1: Null rejection probabilities for a nominal 0.05 test

(a) Results for λbn (b) Results for λrn

d d

n p 100 400 1600 4900 1002 2252 3172 100 400 1600 4900 1002 2252 3172

1000
6 .036 .034 .034 .037 .038 .036 .036 .020 .019 .021 .021 .022 .019 .021
18 .040 .035 .036 .041 .039 .038 .036 .037 .029 .029 .033 .033 .031 .030

2000
6 .042 .042 .049 .046 .047 .052 .061 .030 .025 .033 .032 .033 .027 .039
18 .031 .028 .032 .032 .030 .030 .028 .023 .021 .028 .027 .025 .027 .020
38 .053 .046 .051 .052 .052 .067 .053 .048 .039 .043 .045 .047 .062 .046

4000

6 .045 .048 .049 .054 .058 .051 .065 .034 .034 .038 .042 .046 .035 .058
18 .028 .031 .029 .028 .030 .038 .035 .023 .026 .024 .022 .025 .032 .028
38 .031 .034 .039 .036 .040 .035 .037 .026 .029 .033 .032 .035 .032 .033
51 .042 .051 .051 .040 .047 .047 .030 .038 .044 .045 .034 .042 .041 .027

8000

6 .049 .055 .056 .048 .054 .055 .073 .040 .046 .048 .040 .046 .050 .061
18 .034 .035 .036 .030 .032 .040 .041 .028 .028 .032 .025 .027 .032 .034
38 .033 .035 .035 .037 .037 .025 .047 .027 .029 .030 .032 .032 .021 .043
51 .034 .043 .035 .040 .037 .035 .038 .029 .036 .028 .034 .033 .030 .031
83 .043 .042 .050 .048 .042 .054 .046 .038 .035 .046 .041 .034 .048 .042

The null hypothesis is that Fε(−1|1) is equal to the lower bound of the population identified set.

M.2.4 Monte Carlo Simulations

We start by examining the null rejection probabilities of our testing procedure

by setting γ to be the lower bound of the population identified set computed via

(M.21) with t = −1 and w̄ = 1. In unreported simulations we found setting γ to be

the upper bound of the identified set yielded similar results. We consider sample

sizes of n = 1000, 2000, 4000, and 8000 for each of the data generating processes

discussed in Section M.2.2. Results with d ≤ 10000 are based on 5000 Monte

Carlo replications and 250 nonparametric bootstrap draws. When d > 10000, we

use 1000 Monte Carlo replications.

We first consider the designs in which p − 2 ≥ d so that Fε(−1|1) is (nearly)

point identified. In this case, one might alternatively consider estimating probabil-

ity weights x0 satisfying the moment restrictions in (M.19) by constrained GMM,

and then conducting inference on Fε(−1|1) using a bootstrapped Wald test. For

example, this is the approach that appears to have been taken by Nevo et al. (2016)

in the related setting discussed in Example 2.1. However, the non-negativity con-

straints on x0 imply that the bootstrap will generally not be consistent in this

case (Fang and Santos, 2018).

We demonstrate this point in Figure 2 with plots of the actual and nominal

level for both our (FSST) and for the bootstrapped Wald test based on constrained
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Figure 3: Power curves for FSST nominal 0.10 test
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The vertical dotted lines indicate the lower and upper bounds of the population identified set.
The horizontal dotted line indicates the nominal level (0.10).

GMM. The latter exhibits large size distortions. For example the GMM test with

nominal level 5% rejects in over 15% of draws d = 16, p = 18 and n = 2,000, and

a nominal level 10% test rejects in over 25% of draws when d = 4, p = 18, and

n = 4,000. Re-centering the GMM criterion before conducting this test (e.g. Hall

and Horowitz, 1996) leads to even greater over-rejection. In contrast, FSST has

nearly equal nominal and actual levels across the examined designs.

In Table 1, we report empirical rejection rates for our procedure using partially

identified designs that range in size from relatively small (d = 100, p = 6) to

enormous (p = 83, d = 3172 ≈ 105). We note that in this application, p/n should

be small because otherwise we will draw samples (or bootstrap samples) that do

not contain all the support points of W . Reflecting this constraint, in Table 1 we

let p grow with n but keep the largest values of p/n at approximately .01. No

such restriction is imposed on d and we consider designs in which d far exceeds n

(e.g., with d/n as large as 100). Across all different data generating processes and

sample sizes, even in the largest models, we find the null rejection probabilities

remain approximately no greater than the nominal level.

Comparing panels (a) and (b) of Table 1, we see that the occasional (and mild)

over-rejections can be controlled by using λr
n instead of λb

n. Figure 3 illustrates the
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impact that the choice of λn has on power for two of the smaller designs. Both λb
n

and λr
n provide considerable power gains over the conservative choice of λn = 0.
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