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Abstract

I develop a semiparametric minimum distance from independence estimator for a

nonseparable instrumental variables model. An independence condition identi�es the

model for many types of discrete and continuous instruments. The estimator is taken

as the parameter value that most closely satis�es this independence condition. Imple-

menting the estimator requires a quantile regression of the endogenous variables on the

instrument, so the procedure is two-step, with a �nite or in�nite-dimensional nuisance

parameter in the �rst step. I prove consistency and establish asymptotic normality for

a parametric, but �exibly nonlinear outcome equation. The consistency of the non-

parametric bootstrap is also shown. I illustrate the use of the estimator by estimating

the returns to schooling using data from the 1979 National Longitudinal Survey.
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1 Introduction

Econometric models with nonseparable (not additively separable) errors are fundamen-

tally implied by most economic theory. If economic agents make decisions according

to marginal incentives, and if these marginal incentives vary due to unobserved het-

erogeneity, then equations relating the levels of decision and outcome variables will be

inherently nonseparable in a latent error. Ignoring such heterogeneity is a source of

misspeci�cation with important empirical consequences (Heckman, 2001).

Well-established inferential approaches are available for situations where a nonsep-

arable error term is independent of the decision, treatment or explanatory variable of

interest (perhaps after conditioning on observed covariates), see for example Matzkin

(2003), Imbens (2004) and Koenker (2005). However, for a large number of economi-

cally interesting questions, such exogeneity or conditional exogeneity assumptions are

untenable. This is especially true of situations in which the latent terms re�ect factors

that a�ect the decision process, such as preferences, expectations or private informa-

tion. Fewer results exist for such cases, owing primarily to the di�culty of establishing

nonparametric identi�cation under both endogeneity and nonseparability.

Much of the recent literature on nonseparable models with endogeneity, includ-

ing this paper, focuses on semi� or nonparametric instrumental variable (IV) models.

Imbens and Newey (2009) establish a nonparametric point identi�cation result by as-

suming that the instrument is continuously distributed with full support. Chesher

(2003) does not impose a large support assumption, but still requires a continuously

distributed instrument to nonparametrically identify local marginal e�ects. This is also

true of Florens et al. (2008), who identify an outcome equation with a �exible polyno-

mial form. However, continuity rules out binary and discrete instruments, such as the

intent-to-treat, which are commonly used in empirical work. Torgovitsky (2015) shows

that such instruments actually can be used for nonparametric identi�cation in nonsep-

arable models with endogeneity, as long as one restricts the dimension of heterogeneity
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in the outcome and �rst-stage equations.1

This paper contains the development of an estimator that implements the identi-

�cation result in Torgovitsky (2015). In the next section, I brie�y review the model

and assumptions for which the result is established. In Sections 3 and 4, I develop a

semiparametric estimator of the parameters in the outcome equation. The estimator

is based on an independence condition that holds only under the true data generating

process. This independence condition depends on the distribution of the endogenous

explanatory variables, conditional on the instruments, so the procedure is two-step. In

the �rst step, the endogenous variables are quantile-regressed on the instruments. In

the second step, an estimate of the outcome equation is found by attempting to satisfy

a sample analog of the independence condition. Although the identi�cation result is

nonparametric, I assume for the purposes of estimation that the admissible collection

of outcome equations can be indexed by a �nite-dimensional parameter. This facili-

tates deriving the asymptotic distribution of the estimator of this parameter, while still

accommodating functional forms that are �exibly nonlinear. The asymptotic variance

turns out to be quite complicated, so I also verify that the nonparametric bootstrap

is a valid inferential procedure. Section 5 contains the results of several Monte Carlo

experiments. I illustrate the use of the estimator by estimating the returns to schooling

in Section 6.

2 Model and Motivation

Estimating the causal e�ect of schooling on wages is a classic and long-standing problem

in economics. It is usually thought that dependence between wages (Y ) and schooling

investment (X) is confounded by the e�ect of unobserved factors (ε), typically referred

to loosely as ability, that predispose agents to obtain higher levels of both. As a result,

1This result was �rst shown in Torgovitsky (2010). D'Haultf÷uille and Février (2015) showed that, under
additional restrictions, some of these results can be interpreted using group theory.
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the relationship between Y and X tends to overstate the causal e�ect of schooling

on wages (the returns to schooling), which is typically the policy-relevant quantity of

interest.

Despite the intuitive appeal of this argument, it has proven di�cult to con�rm

empirically. Many studies have estimated a separable linear model using two-stage

least squares in an attempt to obtain unbiased estimates of the returns to schooling.

Often, these types of studies have shown the opposite of what is predicted by the ability

bias argument. That is, IV estimates of the returns to schooling tend to be larger, not

smaller, than their ordinary least squares (OLS) counterparts.2

As discussed by Card (1995, 2001), one potential explanation for this phenomenon is

that the relationship between wages and schooling is nonseparable, as would result from

heterogeneity in preferences, discount factors, or the ceteris paribus path of life-cycle

earnings. If this is the case, then IV estimates will place more weight on the returns

faced by agents whose schooling decisions are more heavily impacted by the particular

instrument being used. Most of the instruments considered in the empirical literature

are cost shifters that should have a larger impact on agents inclined to obtain lower

levels of schooling. If there are diminishing returns to schooling, these agents will tend

to have higher marginal returns, which will in�ate the IV estimate. In other words, the

ability bias explanation may be accurate, with the larger IV estimates resulting from a

failure to account for heterogeneity in marginal returns.

The nonseparable model analyzed in Torgovitsky (2015), together with the estimator

discussed in the rest of the paper, provide an empirical framework for evaluating this

argument by obtaining IV estimates that allow for both heterogeneity and endogeneity.

The model postulates that Y is determined as

Y = gθ0(X, ε), (1)

2See Table II in Card (2001) for a summary of several studies.
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where X is a vector of included explanatory variables (or treatments) with support

X ⊆ Rdx and ε is an unobservable with support E ⊆ R.3 The outcome functions are

parameterized by θ ∈ Θ ⊆ Rdθ , with θ0 ∈ Θ denoting the element that is assumed to

generate the data.4 In the returns to schooling problem, as in many other economic

applications, X is endogenous, so it is assumed that there is an instrument Z with

support Z that is excluded from (1). The following assumptions are maintained in

conjunction with (1).5

Assumption I.

I1. (Continuity) a) For every θ ∈ Θ, gθ is everywhere continuous. b) (X, ε)|Z = z

is continuously distributed for each z.

I2. (Scalar heterogeneity) For every θ ∈ Θ, gθ(x, ·) is strictly increasing for all x.

I3. (Normalization) If θ, θ′ ∈ Θ and θ 6= θ′, then there does not exist a strictly

increasing function ψ such that gθ(x, e) = gθ′(x, ψ(e)) for all (x, e) ∈ supp(X, ε).

I4. (First stage equation) There exists an unobserved vector η ∈ Rdx and functions

hk such that for each k = 1, . . . , dx, (i) Xk = hk(Z, ηk), (ii) hk(z, ·) is strictly

increasing for every z and (iii) (η, ε)⊥⊥Z.

Assumptions I are discussed in detail in Torgovitsky (2015). In that paper it is

shown that Assumptions I, together with a relevance condition, imply that

(V, εθ)⊥⊥Z ⇔ θ = θ0, (2)

where εθ ≡ g−1
θ (X,Y ) for any θ ∈ Θ and V ≡ ~FX|Z(X | Z), where ~FX|Z(x | z) ≡

(FX1|Z(x1 | z), . . . , FXdx |Z(xdx | z)) is the vector of marginal distributions of X, condi-

3For any random vector X, supp(X) denotes the support of X, which is de�ned as the smallest closed
set S, such that P[X ∈ S] = 1.

4The assumption that Θ is �nite-dimensional is made for the asymptotic analysis, but is not needed to
establish identi�cation.

5All of the assumptions and identi�cation results extend easily to accommodate included covariates in
(1). As I explain in Section 4.5, extending the estimation results to handle covariates is straightforward
when they are discrete, but introduces some additional complications when they are continuous.
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tional on Z = z. The equivalence in (2) shows that θ0 is identi�ed, because the random

vector (V, εθ, Z) is comprised of identi�ed or known functions of the observable random

vector (X,Y, Z) for any given θ. The additional relevance condition needed for (2) is

quite mild, and essentially just requires that the marginal distribution of X, conditional

on Z = z, varies with z. See Torgovitsky (2015) for the exact statement. A remarkable

feature about the relevance condition is that it can be satis�ed regardless of whether

Z has a continuous, discrete or even binary distribution.

Assumptions I do not require X to be independent of ε. Manski (1983) proposed

a minimum distance from independence estimator for this case and established its

consistency. Brown and Wegkamp (2002) derived the asymptotic distribution of a

similar estimator, while Linton et al. (2008), Komunjer and Santos (2010) and Santos

(2011) generalized the analysis to allow for various types of speci�cations with an in�nite

dimensional θ. These papers are all based on the identi�cation condition that εθ ⊥⊥X if

and only if θ = θ0. This condition reduces to (2) for Z = X, since V becomes degenerate

in this case. Hence, the contribution of this paper can be viewed as extending the

analysis of Brown and Wegkamp (2002) to allow for X to be endogenous. Since I

assume that θ is �nite dimensional, the model is not nested with those in Linton et al.

(2008), Komunjer and Santos (2010) or Santos (2011).

3 Estimation

An implication of (2) is that the function

Dθ(t) ≡ P
[
~FX|Z(X | Z) ≤ tv, g−1

θ (X,Y ) ≤ te, Z ≤ tz
]

−P
[
~FX|Z(X | Z) ≤ tv, g−1

θ (X,Y ) ≤ te
]

P [Z ≤ tz]

= P
[
X ≤ ~QX|Z(tv | Z), Y ≤ gθ(X, te), Z ≤ tz

]
(3)

−P
[
X ≤ ~QX|Z(tv | Z), Y ≤ gθ(X, te)

]
P [Z ≤ tz]
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is zero for every t = (tv, te, tz) ∈ T ≡ (0, 1)dx × E × Z if and only if θ = θ0, where

~QX|Z(v |z) ≡ (QX1|Z(v1 |z), . . . , QXdx |Z(vdx |z)).6,7 If ‖·‖µ is the L2�norm with respect

to a probability measure µ with support containing T , then ‖Dθ‖µ ≥ 0 and ‖Dθ‖µ = 0

if and only if θ = θ0. Given some appropriately consistent estimator D̂θ of Dθ, it is

natural to take the θ̂ ∈ Θ that minimizes ‖D̂θ‖µ as an estimator of θ0.8

A �rst-step estimator of QX|Z is needed to construct an estimator of D̂θ. For each

k = 1, . . . , dx let q0,k ≡ QXk|Z and suppose that q0,k ∈ Qk, a collection of functions

from (0, 1) × Z into Xk that are weakly increasing in their �rst argument. Let Q =

Q1 × · · · × Qdx and write q(v|z) ≡ (q1(v1|z), . . . , qdx(vdx |z)) for any q ∈ Q, v ∈ (0, 1)dx

and z ∈ Z. Then for any q ∈ Q, de�ne Dθ,q(t) just like Dθ(t) in (3), except with

~QX|Z(tv | Z) ≡ q0(tv|Z) replaced by q(tv|Z).

The conditional quantile of X given Z, i.e. q0, is identi�ed from the observed

data and can be estimated with a variety of quantile regression techniques. In Section

4.4, I describe a few such estimators and verify the regularity conditions required of

them under the asymptotic framework provided in the next section. For now, just let

q̂ ≡ (q̂1, . . . , q̂dx) be some appropriate �rst-step estimator of q0. Given q̂, a feasible

estimator of Dθ,q̂(t) can be constructed as

D̂θ,q̂(t) ≡
1

n

n∑
i=1

1[Xi ≤ q̂(tv|Zi), Yi ≤ gθ(Xi, te), Zi ≤ tz]

−
( 1

n

n∑
i=1

1[Xi ≤ q̂(tv|Zi), Yi ≤ gθ(Xi, te)]
)( 1

n

n∑
i=1

1[Zi ≤ tz]
)

6In (3) and throughout the paper, all inequalities involving vectors should be understood component-wise,
i.e. X ≤ x if and only if Xk ≤ xk for every k = 1, . . . , dx.

7I use the notation QXk|Z(vk | z) ≡ inf{xk : FXk|Z(xk | z) ≥ vk}.
8Other norms of Dθ also yield potential objective functions. For similar problems, Manski (1983) pro-

posed using the sup-norm and Brown and Matzkin (1998) suggested a type of bounded Lipschitz distance.
My approach follows Brown and Wegkamp (2002) and Komunjer and Santos (2010) in using an L2-norm
because the projection geometry is useful for the distribution theory.
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and θ̂ can be de�ned as any θ ∈ Θ that satis�es

‖D̂
θ̂,q̂
‖µ ≤ inf

θ∈Θ
‖D̂θ,q̂‖µ + oP(n−1/2), (4)

where the additional oP(n−1/2) term allows for inaccuracies such as optimization or

numerical error, as long as they are of su�ciently small magnitude.9 Notice that if one

takes Zi = Xi and q̂(tv|Zi) = Xi for all tv ∈ (0, 1), then θ̂ is numerically equivalent to

the estimator of Brown and Wegkamp (2002). Their estimator will be inconsistent if

X is endogenous.

Implementing the estimator is straightforward in some important cases. For exam-

ple, suppose that dx = 1 and that Z ∈ {0, 1} is binary. This situation arises frequently

in natural experiments, and in randomized experiments with partial compliance. A

good choice for q̂ in this case is the empirical quantile function.10 For a given θ,

‖D̂θ,q̂‖µ is computed by integrating D̂θ,q̂(t) against µ over T . This can be performed

numerically in general, but for certain choices of µ, it can be implemented analytically.

For example, if µ = Unif(0, 1) × µε × Unif(Z) is a product measure, then it can be

shown that

‖D̂θ,q̂‖2µ =
1

n2 |Z|

n∑
i=1

n∑
j=1

ωij(1− µε[g−1
θ (Xi, Yi) ∨ g−1

θ (Xj , Yj)]), (5)

where the ωij terms are de�ned as

ωij ≡ (1− Ṽi ∨ Ṽj)

(∑
z∈Z

[1[Zi ≤ z]− F̂Z(z)][1[Zj ≤ z]− F̂Z(z)]

)
,

and where Ṽi ≡ F̂X|Z(Xi | Zi)− 1/NZi , Nz is the number of observations with Zi = z,

and F̂Z(z), F̂X|Z(x | z) are empirical and conditional empirical distribution functions.

Computing ‖D̂θ,q̂‖µ does not require numerical integration in this case. The θ that

9For consistency this error only needs to be oP(1). The n−1/2 rate is used in the distribution theory.
10The de�nition of the empirical quantile function is provided in Example 1 in Section 4.4.
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minimizes ‖D̂θ,q̂‖µ can be found by using a non-smooth optimization algorithm.11 In

practice, many of the computations, such as the ωij terms in the above case, do not

need to be repeated for each θ. Also, the double summation can be replaced by a single

summation after employing a sorting algorithm as in Abrevaya (1999).

4 Asymptotic Theory

Before starting the asymptotic analysis, it will be helpful to examine the structure of

the objective function in more detail. First, collect the observable data together into a

single vector, W = (X,Y, Z). I refer to realizations of W as w = (wx, wy, wz). De�ne

Atθ,q(w) ≡ 1[wx ≤ q(tv|wz), wy ≤ gθ(wx, te)] and Bt(w) ≡ 1[wz ≤ tz]. Then Dθ,q(t) can

also be written as

Dθ,q(t) ≡ E
[
Atθ,qB

t
]
−E[Atθ,q] E[Bt] ≡ E[Atθ,qB

t
], (6)

whereB
t
(w) ≡ Bt(w)−E(Bt).12 Letting En denote the expectation operator associated

with the empirical measure, D̂θ,q(t) can similarly be rewritten as

D̂θ,q(t) ≡ En[Atθ,qB
t]−En[Atθ,q] En[Bt] ≡ En[Atθ,qB

t
n], (7)

where B
t
n(w) ≡ Bt(w)−En(Bt).

Comparing (6) and (7) suggests that the behavior of D̂ as an estimator of D will

be determined by the properties of the empirical process {Qn(Atθ,qB
t
) : θ ∈ Θ, q ∈

Q, t ∈ T }, where Qn ≡ En−E. If D̂ approximates D well as a function on Θ×Q×T ,

then it is reasonable to expect that θ̂ is a consistent estimator of θ0. From there, the

asymptotic distribution of θ̂ can be characterized by analyzing the impact on D̂θ,q of

11The computational results reported in this paper used the glbDirect routine in TOMLAB (Holmström
et al., 2010) for optimization, which implements the DIRECT algorithm proposed by Jones et al. (1993).

12Depending on the context, sometimes I write Bt(z) and B
t
(z) instead of Bt(w) and B

t
(w).
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small movements in θ near θ0. The consequences of estimating q0 by q̂ can be understood

by looking at the e�ect on D̂θ,q of small perturbations in q near q0.

For performing this analysis, another form for Dθ,q(t) is also useful. Using the law

of iterated expectations, write

Dθ,q(t) = E
[
P
(
X ≤ q(tv | Z), g−1

θ (X,Y ) ≤ te
∣∣ Z)Bt

(Z)
]

=

∫
Z
FXεθ|Z(q(tv | z), te | z)B

t
(z) dFZ(z). (8)

The second equality here expresses expectation with respect to Z as an integral for

notational clarity. Equation (8) is useful for analyzing the derivatives of Dθ,q(t) with

respect to θ and q. It can also be written as

Dθ,q(t) =

∫
Z
Cθ(~FX|Z(q(tv|z) | z), Fεθ|Z(te | z); z)B

t
(z) dFZ(z), (9)

where Cθ(·, ·; z) is the copula function of (X, εθ)|Z = z. The following result can be

used to simplify this expression further when evaluated at (θ, q) = (θ0, q0).

Proposition 1. Given I1, I4 holds if and only if both (i) ε⊥⊥Z and (ii) the copula

function of (X, ε)|Z = z is equal to the copula function of (X, ε)|Z = z′ for all z, z′ ∈ Z.

Proposition 1 shows that the copula of (X, ε)|Z = z, say Cθ0(·, ·), does not depend on

the realization Z = z. This will be used later to simplify the asymptotic variance.

4.1 Consistency

Let ‖·‖ denote the Euclidean norm on Rdθ and let ‖qk‖∞ ≡ supvk∈(0,1),z∈Z |qk(vk|z)|

denote the sup-norm on Qk. With a slight abuse of notation, I also write ‖q‖∞ ≡∑dx
k=1 ‖qk‖∞ for the product norm on Q and ‖(θ, q)‖ ≡ ‖θ‖ + ‖q‖∞ for the product

norm on Θ ×Q. Given the identi�cation condition (2), the following assumptions are

su�cient for θ̂ to be consistent.
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Assumption C.

C1. {Wi}ni=1 is an independent and identically distributed sample.

C2. Θ is compact.

C3. {Atθ,q : θ ∈ Θ, q ∈ Q} is Glivenko-Cantelli for every �xed t ∈ T .

C4. For every x, e and all θ′, θ, |gθ′(x, e)− gθ(x, e)| ≤ gbdΘ (e) ‖θ′ − θ‖ for some strictly

positive gbdΘ ∈ L2(µ).

C5. There exists a f bdY ∈ L2(FZ) such that supy,x fY |XZ(y | x, z) ≤ f bdY (z) for every z.

C6. There exists a f bdX ∈ L2(FZ) such that supxk fXk|Z(xk | z) ≤ f bdX (z) for each k and

every z.

C7. ‖q̂ − q0‖∞ →P 0 and ‖q0‖∞ <∞.

Theorem 1. Under Assumptions I, C and condition (2), θ̂ →P θ0.

This theorem exhibits many of the features frequently encountered in extremum

estimation, e.g. Newey and McFadden (1994). The key condition is C3 which, given

C1, ensures that D̂θ,q is consistent for Dθ,q in L2(µ), uniformly over Θ × Q. Low-

level su�cient conditions for C3�actually for the stronger assumption that {Atθ,q : θ ∈

Θ, q ∈ Q} is Donsker for each t�are provided in the next section. Assumptions C4-C6

are used to ensure that ‖Dθ,q‖µ is appropriately continuous at (θ0, q0). Assumption C4

requires the outcome functions to be uniformly parameterized in a smooth way, while

C5 and C6 essentially strengthen I1 and I2 to hold uniformly. Given this continuity, C2

is a standard way of ensuring that θ0 is �uniquely� identi�ed so that no other θ ∈ Θ can

come arbitrarily close to minimizing ‖Dθ,q0‖µ. Assumption C7 reasonably requires the

�rst-step estimator to itself be consistent. The requirement that ‖q0‖∞ < ∞ is a by-

product of using the sup-norm to measure consistency of the �rst-step estimator. While

this can be restrictive, it will typically be implied by the low-level su�cient conditions
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for asymptotic normality of θ̂�see Section 4.4.13

4.2 Asymptotic Normality

Given the consistency of θ̂, its asymptotic distribution can be derived by analyzing

the behavior of ‖D̂θ,q‖µ near (θ0, q0). The approach I take follows that of Pakes and

Pollard (1989) and Chen et al. (2003) for non-smooth objective functions and that of

Andrews (1994), Newey (1994) and Chen et al. (2003) for two-step semiparametric M-

estimators with an in�nite-dimensional nuisance parameter (i.e., q) in the �rst step.

The strategy in the non-smooth literature is to look at the e�ect of small deviations

of the parameters on the smooth population objective function, ‖Dθ,q‖µ, rather than

the non-smooth sample objective function, ‖D̂θ,q‖µ. This is justi�ed if the centered

sample objective function, viewed as a stochastic process indexed by parameters, is

stochastically equicontinuous.

The impact on ‖Dθ0,q0‖µ of small perturbations in θ are described by the deriva-

tive of Dθ,q0(t) with respect to θ at θ0, denoted as ∆0(t). Using the law of iterated

expectations this can be calculated from (8) as

∆0(t) = ∇θ E
[
1[X ≤ q0(tv|Z)]P [ε ≤ te |X,Z]B

t
(Z)
]

= E
[
1[X ≤ q0(tv|Z)]∇θFY |XZ(gθ0(X, te) |X,Z)B

t
(Z)
]

= E
[
1[X ≤ q0(tv|Z)]fY |XZ(gθ0(X, te) |X,Z)∇θgθ0(X, te)B

t
(Z)
]
. (10)

Small deviations in q, which is an element of an in�nite-dimensional space, Q, are
13 It is possible to relax this restriction by replacing the sup-norm on Q by the norm

‖q‖† ≡

(∫
T

(
sup
z∈Z
‖q(tv|z)‖

)2

dµ(t)

)1/2

.

This norm is weaker than ‖·‖∞, and in particular it is possible to have ‖q0‖† <∞ even if X has unbounded
support. However, in the analysis ahead, it is important to be able to derive a Bahadur representation for
q̂ − q under the norm being used, which would be complicated if this norm were ‖ · ‖† rather than ‖·‖∞.
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analyzed using a Fréchet derivative. In the Appendix, the function

Π
[q−q0]
θ0,q0

(t) ≡
∫
Z

(q − q0)(tv|z)′∇xFXεθ0 |Z(q0(tv|z), te | z)B
t
(z) dFZ(z) (11)

is shown to satisfy ‖Dθ0,qn−Dθ0,q0−Π
[qn−q0]
θ0,q0

‖µ = o(‖qn − q0‖∞) for sequences qn → q0.

Formally, Π
[q−q0]
θ0,q0

is the L2(µ)�Fréchet derivative of Dθ0,q at q0, in the direction q − q0.

The following conditions are su�cient for
√
n(θ̂− θ0) to be asymptotically normal and,

in particular, ensure that the above calculations are actually valid.

Assumption D.

D1. θ0 is in the interior of Θ.

D2. gθ(x, e) is di�erentiable with respect to θ for every x, e.

D3. {Atθ,q : θ ∈ Θ, q ∈ Q} is Donsker for every �xed t ∈ T .

D4. For some T ′ ⊆ T with µ(T ′) > 0, {∆0(t) : t ∈ T ′} is not a proper linear subspace

of Rdθ .

D5. q̂ ∈ Q with probability approaching 1 and either a) ‖q̂ − q0‖∞ = OP(n−1/2)

or b) ‖q̂ − q0‖∞ = oP(n−1/4) and each of ∇xkgθ(x, e), ∇xkFY |XZ(y | x, z) and

∇xkfX|Z(x|z) exist with supx |∇xkgθ(x, e)| ≤ ∇xgbd(e), supy,x |∇xkFY |XZ(y |x, z)|

≤ ∇xF bdY (z) and supx |∇xkfX|Z(x | z)| ≤ ∇xf bdX (z) for some ∇xgbd ∈ L2(µ),

∇xF bdY ∈ L2(FZ) and ∇xf bdX ∈ L1(FZ).

D6.
√
nΠ

[q̂−q0]
θ0,q0

(t) =
√
nEn ψ(t) + oP(1) for some ψ(t) with Eψ(t) = 0 and Ψ(t, t̃) ≡

Eψ(t)ψ(t̃) <∞ uniformly over t, t̃ ∈ T . The oP(1) term is uniform over t ∈ T .

Theorem 2. Under the assumptions of Theorem 2 together with Assumptions D,

13



√
n(θ̂ − θ0) N(0,∆

−1
0 Σ0∆

−1
0 ), where ∆0 ≡

∫
T ∆0(t)∆0(t)′ dµ(t) and

Σ0 ≡
∫
T ×T

∆0(t)∆0(t̃)′[σ(t, t̃) + ν(t, t̃)] dµ(t) dµ(t̃),

with σ(t, t̃) ≡
[
Cθ0(tv ∧ t̃v, Fεθ0 (te ∧ t̃e))− Cθ0(tv, Fεθ0 (te))Cθ0(t̃v, Fεθ0 (t̃e))

]
×
[
FZ(tz ∧ t̃z)− FZ(tz)FZ(t̃z)

]
(12)

and ν(t, t̃) ≡ Ψ(t, t̃) + E

[
Atθ0,q0B

t
ψ(t̃) +At̃θ0,q0B

t̃
ψ(t)

]
.

Assumptions D1 and D2 are standard and needed for the existence of ∆0(t) in (10).

Assumption D4 is a weak regularity assumption that requires ∆0, as a function on T ,

to carry some information about each component of θ. Assumption D5 requires Π
[q−q0]
θ0,q0

to be an OP(n−1/2) approximation of ‖Dθ0,q‖µ. This will occur if q̂ converges to q0 at

the parametric rate, which will typically be the case if Z is discretely distributed or if a

parametric model is used to estimate q0. If the additional smoothness conditions of D5

b) hold then Π
[q−q0]
θ0,q0

is improved to an O(‖q − q0‖2∞) approximation of ‖Dθ0,q‖µ near q0,

which allows the required rate of convergence of ‖q − q0‖∞ to be reduced to n−1/4. This

is the well-known semiparametric rate discussed by Newey (1994) and others. It can

be attained by nonparametric smoothing estimators of q0 when Z is continuous. Given

this rate of convergence, D6 further requires that Π
[q̂−q0]
θ0,q0

(t) has an asymptotically linear

(or Bahadur) representation. Since Π
[q−q0]
θ0,q0

(t) is linear in q−q0, this property will follow

from a Bahadur representation for (q̂ − q0)(tv|z)�see (11). These are commonplace in

the literature, e.g. Chapter 4 of Koenker (2005).

An important component of Theorem 2 is D3. Like C3, this is a high-level condition

that ensures the empirical process indexed by {Atθ,q : θ ∈ Θ, q ∈ Q} is weakly convergent

for every t. Following Brown and Wegkamp (2002), su�cient conditions for D3 can be

derived by exploiting the structure of Atθ,q. Speci�cally, A
t
θ,q is an indicator function for

the intersection of the subgraphs of gθ and q, i.e. Atθ,q(w) = 1[wy ≤ gθ(wx, te)]1[wx ≤

q(tv|wz)]. The entropy of collections of indicator functions like these can be controlled

14



by assuming that the boundary of the subgraph is su�ciently smooth with respect to

the index.

Proposition 2. Assumption D3 (hence C3) is satis�ed if the collection {gθ : θ ∈ Θ}

satis�es either

1a. For every e ∈ E there exists an integer Je and functions {βej}J
e

j=1 such that for

every θ ∈ Θ there is an αeθ ∈ RJe with gθ(x, e) =
∑Je

j=1 α
e
θ,jβ

e
j (x).

1b. X is bounded, fY X is uniformly bounded and for every e ∈ E, {gθ(·, e) : θ ∈ Θ} is

a subset of the Hölder ball of order γΘ, denoted CγΘ(X ), with γΘ > dx.

and if every one of the collections Qk, k = 1, . . . , dx satis�es either

2a. For every v ∈ (0, 1) there exists an integer Jv and functions {βvj }J
v

j=1 such that for

every qk ∈ Qk there is an αvq ∈ RJv with qk(v|z) =
∑Jv

j=1 α
v
q,jβ

v
j (z).

2b. Z is bounded, fXZ is uniformly bounded and for every v ∈ (0, 1), {qk(v|·) : qk ∈

Qk} ⊆ CγQk (Z) with γQk > dz.

Condition 1a means that {gθ(·, e) : θ ∈ Θ} is a subset of a �nite-dimensional vector

space of functions for each �xed e. This is a widely used su�cient condition in em-

pirical process theory, see e.g. Pollard (1984) or van der Vaart and Wellner (1996). It

ensures that the collection of subgraphs corresponding to {gθ(·, e) : θ ∈ Θ} is a Vapnik-

�ervonenkis�(VC�)class. The collection of indicator functions for a VC-class satis�es

the Donsker property. Condition 1b takes a di�erent approach and directly bounds the

bracketing number of the collection of indicator functions. This comes from well-known

bounds on the bracketing numbers for collections of functions satisfying the smoothness

requirements in that assumption, as well as bounds on the density, which ensure that

the probability mass is smoothly spread out.14 That the conditions in Proposition 2

can depend on each e, for {g(·, e) : θ ∈ Θ}, and on each v, for {qk(v|·) : qk ∈ Qk}, adds

some additional �exibility. It is possible because of the monotonicity of these functions

14These density bounds are nearly redundant given C5 and C6.
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in e and v. Note that 2a is always satis�ed when Z is discretely distributed with �nite

support.

The asymptotic variance given in (12) is very complicated. It would be di�cult

to construct a feasible estimator of this quantity. However, as I show in the next

section, the bootstrap can be used to perform inference. It is also di�cult to gain much

intuition from the form of the asymptotic variance, although a few things can be said.

First, the contribution of the �rst-step estimator is captured by ν(t, t̃). This term itself

depends on a complicated interaction between the components of the criterion function,

i.e. the functions Atθ0,q0 and B
t
, and the in�uence function for the Fréchet derivative,

ψ(t). The latter depends on the model used for q0 ≡ QX|Z , although for the examples

considered in Section 4.4 I have not found that specifying the model provides any useful

simpli�cation.

If the distribution of X|Z were known and did not need to be estimated then

the limiting variance would be determined by ∆0, σ and µ. As discussed, the �rst of

these is the pointwise derivative of Dθ,q at (θ0, q0) and as such captures the amount of

local information about θ in the underlying data generating process. The second is the

covariance function for the limiting process of {
√
nD̂θ0,q0(t) : t ∈ T }, which corresponds

to the identi�cation condition (2). The last ingredient, µ, is a measure chosen by the

analyst. In principle, it should be possible to determine an optimal choice of µ and

then construct a data-driven procedure for implementing it, as in GMM. However this

appears to be quite di�cult, and the work of Carrasco and Florens (2000) suggests

that the resulting procedure would be an ill-posed inverse problem requiring careful

regularization. It seems appropriate to leave this problem for future research.

4.3 Bootstrap

Let {W ?
i }ni=1 denote a nonparametric bootstrap sample drawn with replacement from

{Wi}ni=1. That is, {W ?
i }ni=1 are independently and identically distributed according to
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the empirical measure Pn, conditional on the realizations {Wi}ni=1. De�ne

D?
θ,q(t) ≡

1

n

n∑
i=1

1[X?
i ≤ q(tv|Z?i ), Y ?

i ≤ gθ(X?
i , te), Z

?
i ≤ tz]

−

[
1

n

n∑
i=1

1[X?
i ≤ q(tv|Z?i ), Y ?

i ≤ gθ(X?
i , te)]

][
1

n

n∑
i=1

1[Z?i ≤ tz]

]

as the bootstrap counterpart to D̂θ,q(t). Next, let q? be an estimate of q0 using {W ?
i }ni=1

and take θ? to be any θ ∈ Θ that satis�es

‖D?
θ?,q?‖µ ≤ inf

θ∈Θ
‖D?

θ,q?‖µ + oP?(n
−1/2). (13)

In (13), P? = P [· | {Wi}ni=1] denotes the population measure, conditional on the data,

and the inequality is meant to hold for almost any realization of the data.15 Note that

the criterion in (13) is not re-centered around a quantity based on θ̂, since this is not

necessary for simply approximating the asymptotic distribution of θ̂ through simulation

(Hahn, 1996).

Giné and Zinn (1990) show that the weak convergence of empirical processes extends

quite generally to conditional weak convergence of bootstrapped empirical processes.

The next theorem leverages these results to show that
√
n(θ? − θ̂) converges weakly

under P? to the limiting distribution of
√
n(θ̂ − θ0) with P�probability approaching 1.

Let P?
n denote the empirical measure of the bootstrap sample and E?

n the expectation

operator with respect to P?
n.

Assumption D?. For almost every realization of {Wi}∞i=1,

D5?. q? ∈ Q with P?�probability approaching 1 and either a) ‖q? − q̂‖∞ = OP?(n
−1/2)

or b) ‖q? − q̂‖∞ = oP?(n
−1/4) and the smoothness conditions in D5 b) hold.

D6?.
√
nΠ

[q?−q̂]
θ0,q0

(t) =
√
n(E?

n−En)ψ(t)+oP?(1) where ψ(t) is the same in�uence func-

tion as in D6 and the oP?(1) term is uniform over T .
15As is common in the literature, the dependence of P? on n is suppressed in the notation. The symbol

P?
n, introduced ahead, denotes the empirical measure with respect to the bootstrap sample.

17



Theorem 3. Under the assumptions of Theorem 2 together with Assumptions D?,

√
n(θ? − θ̂) N(0,∆

−1
0 Σ0∆

−1
0 ) with respect to P?, with P�probability approaching 1.

Assumptions D5? and D6? are bootstrap counterparts to D5 and D6 and can be

expected to hold in most circumstances. Giné and Zinn (1990) note that Theorem 3 can

be used to approximate the asymptotic distribution of
√
n(θ̂−θ0) through Monte Carlo

simulation by drawing bootstrap samples {{W ?
bi}ni=1, b = 1, . . . , B} with replacement

from {Wi}ni=1 for a large integer B. For each b, one uses {W ?
bi}ni=1 to estimate q?b and

compute θ?b from (13). The sample quantiles of {θ?b}Bb=1 can then be used to construct

con�dence intervals for θ0 that have the correct size asymptotically.

4.4 First-Step Quantile Estimators

This section contains three examples which show that Assumptions D5 and D6 are

broadly applicable.

Example 1 (Empirical Conditional Quantile Function). When Z is a �nite set,

an attractive choice for q̂k(vk|z) is the empirical quantile function, de�ned as the jth

order statistic of X̂k,z for vk ∈ ( j−1
Nk,z

, j
Nk,z

], where X̂k,z = {Xi,k : Zi = z} has Nk,z > 0

elements. It is well known that ‖q̂k − q0,k‖∞ = OP(n−1/2) with
√
n(q̂k − q0,k)(vk|z) =

√
nEn φk(vk|z) + oP(1) where

φk(vk|z)(w) ≡
vk − 1[wxk ≤ q0,k(vk|z), wz = z]/P[Z = z]

fXk|Z(q0,k(vk|z) | z)

has mean zero under P. The remainder is uniform over Z due to its �niteness, and

uniform over tv when Xk|Z = z is supported on a compact interval and has a density

that is continuous and bounded away from 0.16 Let φ(v|z) ≡ (φ1(v1|z), . . . , φdx(vdx |z)).
16See, for example, Lemma 21.4 and Corollary 21.5 of van der Vaart (1998).

18



Then
√
nΠ

[q̂−q0]
θ0,q0

(t) =
√
nEn ψ(t) + oP(1) with

ψ(t) =

∫
Z
φ(tv|z)′∇xFXUθ0 |Z(q0(tv|z), te | z)B

t
(z) dFZ(z).

An application of Fubini's Theorem shows that Eψ(t) = 0 as required by D6. Condi-

tions D5? and D6? can be veri�ed using similar arguments and the results in Section 5

of Bickel and Freedman (1981).

Example 2 (Linear Quantile Regression). Suppose that q0,k(vk|Z) = Z ′βk(vk) for

each k, where Z is a random dz�vector and βk(vk) ∈ Rdz for each vk, as in the celebrated

linear quantile regression model of Koenker and Bassett (1978). Let β̂k(vk) denote the

linear quantile regression estimator. If the density of Xk|Z is uniformly bounded away

from 0 and the support of Z is bounded then ‖q̂k − q0,k‖∞ = O(supvk∈(0,1) ‖(β̂k −

βk)(vk)‖) = OP(n−1/2). In addition,

√
n(β̂k − βk)(vk) =

1√
n

n∑
i=1

Ξ−1
k Zi

(
vk − 1[Xi,k ≤ Z ′iβk(vk)]

)
+ oP(1),

where Ξk ≡ E
[
fXk|Z(Z ′βk(vk) | Z)ZZ ′

]
and the remainder is uniform over vk ∈ (0, 1).

Veri�cation of D6 then proceeds as in Example 1. Conditions D5? and D6? can be

veri�ed using similar arguments and the results in Appendix F of Chernozhukov et al.

(2009).

Example 3 (Kernel Smoothing Quantile Regression). Nonparametric smoothing

techniques can also be used to estimate the �rst stage quantile regression when Z is

continuously distributed. For example, when dx = dz = 1, a local polynomial estimator

q̂(v|z) can be constructed by performing a polynomial quantile regression on the data

{(Xi, Zi) : Zi ∈ [z − h, z + h]}, where h > 0 is a bandwidth parameter that tends to 0

as the sample size increases. Chaudhuri et al. (1997, Lemma 4.1) established Bahadur

representations for general estimators of this type. These estimators exhibit rates of

convergence that depend on dz and the assumed smoothness of q0(v|z) as a function of
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z. The rate is slower than
√
n, but can be faster than n1/4 and thus satisfy D5. Despite

this, Π
[q̂−q0]
θ0,q0

will typically converge at the
√
n�rate because it is an average over Z and

hence depends on all n observations�see Newey (1994) or Chaudhuri et al. (1997).

4.5 Covariates

It is possible to include observed covariates, say X̃, into outcome equation (1), so

that Y = gθ0(X, X̃, εθ0). With appropriate modi�cations of Assumption I, the iden-

ti�cation condition (2) becomes (V, εθ)⊥⊥Z|X̃ if and only if θ = θ0, where now Vk ≡

F
Xk|X̃,Z(Xk | X̃, Z). The criterion function is adjusted by replacing (3) with

Dθ,q0(t) = P
[
X ≤ ~Q

X|X̃,Z(tv | tx̃, Z), Y ≤ gθ(X, tx̃, te), Z ≤ tz
∣∣∣ X̃ = tx̃

]
(14)

−P
[
X ≤ ~Q

X|X̃,Z(tv | tx̃, Z), Y ≤ gθ(X, tx̃, te)
∣∣∣ X̃ = tx̃

]
P
[
Z ≤ tz

∣∣∣ X̃ = tx̃

]
,

where t ≡ (tv, te, tz, tx̃) ∈ T and T now also covers the support of X̃. If this support is

�nite, then it is straightforward to estimate Dθ,q0(t) by conditioning on X̃ in the �rst

step and in the empirical measure P[· | X̃]. The previous asymptotic analysis extends

readily.

If some component of X̃ is continuous then there are at least two reasonable ap-

proaches that could be taken. First, one could use a sieve to estimate P[· | X̃], as in

Chen and Pouzo (2012) for conditional moment models. Alternatively, after rewriting

(14) as

Dθ,q0(t) = E
[
1[X ≤ ~Q

X|X̃,Z(tv | X̃, Z)]1[Y ≤ gθ(X, X̃, te)]

×
(

1[Z ≤ tz]− FZ|X̃(tz | X̃)
)
| X̃
]
,

one could use the observation of Dominguez and Lobato (2004) that this conditional

20



moment is equal to zero a.s. for a.e. t = (tv, te, tz) if and only if

D̃θ,q0(t) ≡ E
[
1[X ≤ ~Q

X|X̃,Z(tv | X̃, Z)]1[Y ≤ gθ(X, X̃, te)]

×
(

1[Z ≤ tz]− FZ|X̃(tz | X̃)
)

1[X̃ ≤ tx̃]
]

= 0

for a.e. t = (tv, te, tz, tx̃). The asymptotic analysis in this approach would be similar to

the case without covariates, except that now there is an additional in�nite-dimensional

nuisance parameter, F
Z|X̃ , that needs to be accounted for.

5 Monte Carlo

I conducted several Monte Carlo experiments to examine the �nite sample performance

of θ̂ and of the bootstrap approximation to its limiting distribution. The data generating

process (DGP) for these simulations was chosen to roughly approximate some summary

statistics for the 1979 National Longitudinal Survey of Young Men (NLS) data used in

the next section. The outcome equation is given by

gθ(x, e) = e+ θ1(x− x)e+ θ2(x− x) + (θ3/10)(x2 − x2), (15)

where x is a known constant. This speci�cation is like a Mincer equation that allows

for both nonlinearity and unobserved heterogeneity in the returns to education. The

centering around x implies I3 (Matzkin, 2003). I take x = 14, which is roughly the

unconditional median of X under the �rst-stage speci�cation below. The marginal

distribution of εθ0 is N(6, .402) and θ0 = (.05, .05,−.12).

The �rst stage equation is given by X = 22L(γZ + η), where L(a) = (1 + e−a)−1.

This speci�cation restricts X to lie in [0, 22] and ensures that the relevance condition

required for (2) is satis�ed for a variety of choices for the marginal distribution of Z.

The strength of the instrument can be augmented by γ, with γ = 0 corresponding to a

21



completely irrelevant instrument. The marginal distribution of η is taken as N(.40, .62).

To add endogeneity to the outcome equation, I let the joint distribution of (εθ0 , η) be

characterized by a Frank copula, i.e.

Fεθ0η(e, n) = − 1

λ
log

(
1 +

(exp[−λFεθ0 (e)]− 1)(exp[−λFη(n)]− 1)

exp(−λ)− 1

)
, (16)

where Fεθ0 and Fη are the normal marginal distributions previously described and

λ controls the degree of dependence. I let λ = 2, which creates a strong nonlinear

dependence between εθ0 and η and hence between εθ0 and X. If instead of (16),

Fεθ0η(e, n) = Fεθ0 (e)Fη(n), i.e. εθ0 ⊥⊥ η, then the estimator in this paper would be

unnecessary and gθ0 could be consistently estimated using the simpler estimator of

Brown and Wegkamp (2002).

Table 1 contains the results of the Monte Carlo for three di�erent choices of the

marginal distribution of Z, two choices of instrument strength, γ, and samples of size

400, 800 and 1600. The number of replications is set at 500 throughout. The integrating

measure was taken to be µ = Unif(0, 1) × N(ε, σ2
ε) × Unif(Z), where ε and σ2

ε are

chosen conservatively such that the normal component places substantial mass on a

data-determined approximation of the support of εθ0 .
17 The distributions of Z are

chosen to place equal mass on 2, 4 or 8 points of support and to satisfy EZ = 0

with VarZ = 1/4.18 As expected, mean-square errors decrease by roughly a factor of

two as the sample size is doubled and decrease unambiguously when the instrument is

augmented by a larger value of γ. An interesting �nding is that the performance of

the estimator deteriorates as the number of support points of Z increases. The likely

explanation is that any potential bene�ts gained through additional identifying content

are outweighed by higher variance in the �rst stage estimator.

I also veri�ed that the bootstrap procedure in Section 4.3 works as intended. This

17In particular, {g−1θ (x, Yi)}ni=1, which does not depend on θ, is used as a guide to the support of εθ0 .
Then ε is taken as the midpoint of this support and σε is taken equal to its length.

18Speci�cally, the supports are {±1/2}, {±
√

7/4,±1/4} and {±
√

29/8,±5/8,±3/8,±1/8}.
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is a computationally demanding exercise, so I assume that only θ2 is unknown to the

analyst, which greatly speeds up the optimization. With this simpli�cation, it becomes

feasible to bootstrap 1000 times on each of 500 replications. Table 2 shows that the

nominal and actual coverage probabilities for bootstrap con�dence intervals of θ2 are

similar for sample sizes of 100, 200 and 400.

6 Empirical Illustration

In this section, I illustrate the use of the estimator by estimating the returns to schooling

using the extract of the 1979 NLS considered by Card (1995). In this setting, Y is log

wage, X is years of schooling completed, and Z is an indicator variable for whether an

individual grew up near an accredited four-year college.19 The sample is restricted to

the N = 2,946 men with at least 8 years of completed schooling. See Card (1995) for

a complete description of the data.

I estimated four versions of the outcome equation (15) used in the Monte Carlo

simulations with the same choice of µ used there. The estimated marginal e�ects

of years of education on log wages that result from these speci�cations are shown in

Table 3, along with 95% bootstrapped con�dence regions constructed from B = 500

replications. For comparison, the column labeled �OLS� reports the coe�cient on Xi in

an ordinary linear regression, �OLS2� reports the estimated marginal e�ects of schooling

on log wages when X2
i is added to this regression, and �IV� reports the coe�cient on

Xi from the instrumental variables estimator that uses Zi as an instrument for Xi.

These comparison regressions exhibit the common and somewhat puzzling result that

instrumenting for schooling actually increases the estimated marginal e�ect.

In speci�cation (1) of (15), I restrict θ1 = 0 and θ3 = 0, so that the model is linear

and separable as in the usual linear IV speci�cation. The estimated marginal e�ects in

19To mitigate concerns about schooling being discrete (which would violate I1), I smooth it by adding an
idiosyncratic Unif[-.1, .1] noise term to each Xi. The results are not very sensitive to the magnitude of this
noise term.
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the two speci�cations are roughly the same and the con�dence intervals are of a similar

length although slightly shifted. In speci�cation (2), I restrict θ1 = 0, which renders the

model separable, but allows for both a linear and quadratic endogenous term, even with

only a binary instrument. The results for this speci�cation suggest strongly decreasing

marginal returns to schooling, although the estimates are still much larger than in

the OLS2 regression. Speci�cation (3) restricts θ3 = 0, which allows for unobservable

heterogeneity in marginal e�ects. The results here suggest that agents at the upper

end of the log wage distribution have larger marginal returns to schooling, although the

di�erence is not large. In speci�cation (4), θ1, θ2 and θ3 are estimated simultaneously,

thereby allowing for both nonlinearity and heterogeneity in marginal e�ects. Patterns

similar to those in speci�cations (2) and (3) are evident here as well. Speci�cally, the

marginal returns to schooling are decreasing in schooling and increasing in quantiles.

7 Conclusion

In this paper, I proposed and analyzed a minimum distance from independence esti-

mator for the instrumental variables model studied in Torgovitsky (2015). The model

allows for both unobserved heterogeneity and endogeneity, and was shown in that pa-

per to be identi�ed under low-level conditions even if the available instruments are only

binary. I established that the estimator is consistent and asymptotically normal under

relatively weak regularity conditions, and I veri�ed the consistency of the bootstrap.

I reported the results of Monte Carlo simulations that support the predictions of the

asymptotic theory. An empirical illustration demonstrated some notable features of

the estimator in the context of estimating the returns to schooling with Card's (1995)

geographic location instrument.
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A Proofs

Proof of Proposition 1. Suppose that I4 holds. Then ε⊥⊥Z and FXk|Z(hk(z, nk)|z) =

P [hk(z, ηk) ≤ hk(z, nk) | Z = z] = P [ηk ≤ nk | Z = z] = Fηk(nk) for any n ∈ Rdx and

each k. Let ~Fη(n) ≡ (Fη1(n1), . . . , Fηdx (ndx)). Then Sklar's Theorem implies that for

any n, e and z ∈ Z,

P [ε ≤ e, η ≤ n | Z = z] = P [ε ≤ e,Xk ≤ hk(z, nk) ∀k | Z = z] (17)

= C(Fε|Z(e | z), ~Fη(n); z) = C(Fε(e), ~Fη(n); z).

By hypothesis, the left-hand side of (17) does not depend on z, so C(Fε(e), ~Fη(n); z) =

C(Fε(e), ~Fη(n); z′). Given I1, this implies C(·, ·; z) = C(·, ·; z′) for every z, z′.

Conversely, suppose that (i) and (ii) in the statement of the proposition are satis�ed.

Let ηk ≡ FXk|Z(Xk | Z) and hk(z, ·) ≡ QXk|Z(· | z) for every z ∈ Z. Then hk(z, ·) is

strictly increasing, hk(Z, ηk) = QXk|Z(FXk|Z(Xk | Z) | Z) = Xk and

P [ε ≤ e, η ≤ n | Z = z] = P
[
ε ≤ e,Xk ≤ QXk|Z(nk | z) ∀k

∣∣ Z = z
]

= C(Fε|Z(e | z), n; z) = C(Fε(e), n; z).

By hypothesis, the right-hand side does not depend on z, so (η, ε)⊥⊥Z. Q.E.D.

A.1 Consistency

Three lemmas are used in the proof of Theorem 1. Lemmas 1 and 2 establish continuity

of the criterion function with respect to θ and q, respectively. Lemma 3 establishes the

uniform consistency of D̂θ,q for Dθ,q.

Lemma 1. Under C4 and C5, ‖Dθ,q‖µ is continuous in θ for any q.
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Proof of Lemma 1. For any θ′, θ and t,

|Dθ′,q(t)−Dθ,q(t)| ≤ |E (1[Y ≤ gθ′(X, te)]− 1[Y ≤ gθ(X, te)])|

=
∣∣E [FY |X(gθ′(X, te) |X)− FY |X(gθ(X, te) |X)

]∣∣
≤ f bdY E (|gθ′(X, te)− gθ(X, te)| |X) ≤ f bdY gbdΘ (te)‖θ′ − θ‖,

where the second line follows from the law of iterated expectations and bounds are

obtained from C5 and C4 with f
bd
Y ≡ E f bdY (Z). Hence |‖Dθ′,q‖µ − ‖Dθ,q‖µ| ≤ ‖Dθ′,q −

Dθ,q‖µ ≤ f
bd
Y ‖gbdΘ ‖µ‖θ′ − θ‖, which implies continuity of ‖Dθ,q‖µ in θ. Q.E.D.

Lemma 2. Under C6, ‖Dθ,q −Dθ,q0‖µ = O(‖q − q0‖∞) uniformly in θ.

Proof of Lemma 2. Theorem 2.10.7 of Nelsen (2006) shows that any copula, C,

is Lipschitz with respect to the rectilinear distance with Lipschitz constant 1, i.e.

|C(va, s) − C(vb, s)| ≤
∑dx

k=1

∣∣vak − vbk∣∣ for any va, vb ∈ [0, 1]dx and s ∈ [0, 1]. Using

this property, it follows from (9) that

|Dθ,q(t)−Dθ,q0(t)| ≤
∫
Z

∣∣∣Cθ(~FX|Z(q(tv|z) | z), Fεθ|Z(te | z); z)

− Cθ(~FX|Z(q0(tv|z) | z), Fεθ|Z(te | z); z)
∣∣∣ dFZ(z)

≤
∫
Z

dx∑
k=1

∣∣FXk|Z(qk(tvk |z) | z)− FXk|Z(q0,k(tvk |z) | z)
∣∣ dFZ(z)

≤
∫
Z
f bdX (z)

dx∑
k=1

|qk(tvk |z)− q0,k(tvk |z)| dFZ(z) ≤ f bdX ‖q − q0‖∞ ,

where the third inequality uses C6 with f
bd
X ≡ E f bdX (Z). Q.E.D.

Lemma 3. Under C1 and C3, D̂θ,q converges almost surely to Dθ,q in L2(µ) uniformly

over Θ×Q, i.e. supθ∈Θ,q∈Q ‖D̂θ,q −Dθ,q‖µ →a.s. 0.

Proof of Lemma 3. Adding and subtracting E(Atθ,q) En(Bt) to D̂θ,q(t) − Dθ,q(t) in
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(6) and (7), one has

D̂θ,q(t)−Dθ,q(t) = Qn(Atθ,qB
t)−Qn(Atθ,q) En(Bt)−E(Atθ,q)Qn(Bt), (18)

where Qn ≡ En−E. From C1 and C3, both supθ,q |Qn(Atθ,qB
t)| and supθ,q |Qn(Atθ,q)|

are oa.s.(1), and by the strong law of large numbers |Qn(Bt)| = oa.s.(1) as well. Applying

the triangle inequality to (18), one has that supθ,q |D̂θ,q(t)−Dθ,q(t)| = oa.s.(1), for every

t ∈ T . The continuous mapping and dominated convergence theorems then imply that

sup
θ∈Θ,q∈Q

‖D̂θ,q −Dθ,q‖µ ≤
[ ∫
T

(
sup

θ∈Θ,q∈Q
|D̂θ,q(t)−Dθ,q(t)|

)2
dµ(t)

]1/2
= oa.s.(1) (19)

because D̂θ,q(t) and Dθ,q(t) are each uniformly bounded by 2. Q.E.D.

Proof of Theorem 1. Let ε > 0 be arbitrary. Lemma 1 combined with C2 and (2)

imply that there exists a δ > 0 such that infθ:‖θ−θ0‖>ε ‖Dθ,q0‖µ > δ > 0 = ‖Dθ0,q0‖µ.

Hence P[‖θ̂ − θ0‖ > ε] ≤ P[‖D
θ̂,q0
‖µ > δ]. By the triangle inequality,

‖D
θ̂,q0
‖µ ≤ ‖Dθ̂,q0

−D
θ̂,q̂
‖µ + ‖D

θ̂,q̂
− D̂

θ̂,q̂
‖µ + ‖D̂

θ̂,q̂
‖µ. (20)

The �rst term in (20) is oP(1) by Lemma 2 and C7. The second term is oP(1) by

Lemma 3. Given the de�nition of θ̂, i.e. (4), the �nal term of (20) satis�es

‖D̂
θ̂,q̂
‖µ ≤ ‖D̂θ0,q̂‖µ + oP(1) ≤ ‖D̂θ0,q̂ −Dθ0,q̂‖µ + ‖Dθ0,q̂ −Dθ0,q0‖µ + oP(1),

which is oP(1) by Lemma 3 applied to the �rst term and Lemma 2 with C7 applied to

the second. It follows that P[‖θ̂ − θ0‖ > ε] ≤ P[‖D
θ̂,q0
‖µ > δ] = P[oP(1) > δ] → 0,

which shows that θ̂ →P θ0, because ε > 0 was arbitrary. Q.E.D.
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A.2 Asymptotic Normality

Three additional lemmas are used in the proof of Theorem 2. Lemma 4 establishes the

existence and properties of the L2(µ)�Fréchet derivative of Dθ,q. Lemma 5 shows that

the centered criterion is stochastically equicontinuous, which enables an approximation

of the non-smooth sample objective function by the smooth population objective func-

tion. Lemma 6 establishes weak convergence for a sample average that appears in local

approximations to the criterion function at (θ0, q0).

Lemma 4. Suppose that ‖qn − q‖∞ = o(1). Then ‖Dθ,qn−Dθ,q−Π
[qn−q]
θ,q ‖µ = o(‖qn − q‖∞)

uniformly in θ for

Π
[qn−q]
θ,q (t) ≡

∫
Z

(qn − q)(tv|z)′∇xFXεθ|Z(q(tv|z), te | z)B
t
(z) dFZ(z). (21)

Under the additional smoothness assumptions in D5 b), ‖Dθ,qn − Dθ,q − Π
[qn−q]
θ,q ‖µ =

o(‖qn − q‖2∞) uniformly over θ. In either case, C4, C5 and C6 imply that Π
[qn−q]
θ,q is

L2(µ)�Lipschitz in θ, so that for any θn → θ ∈ Θ, ‖Π[qn−q]
θn,q

−Π
[qn−q]
θ,q ‖µ = o(‖θn − θ‖).

Proof of Lemma 4. Consider the �rst-order Taylor series expansion of FXεθ|Z(·, te |z)

at qn(tv|z) around q(tv|z), i.e.

FXεθ|Z(qn(tv|z), te | z)− FXεθ|Z(q(tv|z), te | z)

= (qn − q)(tv|z)′∇xFXεθ|Z(q(tv|z), te | z) + o(‖(qn − q)(tv|z)‖). (22)

Using this expansion with (8) and (21), one has

|Dθ,qn(t)−Dθ,q(t)−Π
[qn−q]
θ,q (t)|

≤
∫
Z

∣∣∣FXεθ|Z(qn(tv|z), te | z)− FXεθ|Z(q(tv|z), te | z)

− (qn − q)(tv|z)′∇xFXεθ|Z(q(tv|z), te | z)
∣∣∣ dFZ(z)

=

∫
Z
o(‖(qn − q)(tv|z)‖) dFZ(z) ≤ o(‖qn − q‖∞),
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which implies the �rst claim, i.e. ‖Dθ,qn − Dθ,q − Π
[qn−q]
θ,q ‖µ = o(‖qn − q‖∞), because

the bound is uniform in t. Taking the Taylor series expansion out to the second order

replaces the o(‖(qn − q)(tv|z)‖) term in (22) with

(qn − q)(tv|z)′∇xxFXεθ|Z(q(tv|z), te | z)(qn − q)(tv|z) + o(‖(qn − q)(tv|z)‖2).

For any x, e and z, the Hessian term can be rewritten as

∇xxFXεθ|Z(x, e | z) = ∇xxE (1[X ≤ x]P [εθ ≤ e |X,Z = z] | Z = z)

= ∇xxE (1[X ≤ x]P [Y ≤ gθ(X, e) |X,Z = z] | Z = z)

= ∇xx
[∫ x1

−∞
· · ·
∫ xdx

−∞
FY |XZ(gθ(x, e) | x, z)fX|Z(x | z) dx

]
,

Using the fundamental theorem of calculus, the o�-diagonal terms of ∇xxFXεθ|Z(x, e |z)

are integrals of FY |XZ(gθ(x, e) | x, z)fX|Z(x | z) over x with two components of x �xed

at x. By C6, these terms are bounded by f bdX (z) ∈ L2(FZ). The kth diagonal term is

an integral over x of

[
fY |XZ(gθ(x, e) | x, z)∇xkgθ(x, e) +∇xkFY |XZ(gθ(x, e) | x, z)

]
fX|Z(x | z)

+ FY |XZ(gθ(x, e) | x, z)∇xkfX|Z(x | z),

with xk �xed at xk. Under C4-C6 and the additional smoothness assumptions in D5

b), the preceding display is bounded by the FZ�integrable function [f bdY (z)∇xgbd(e) +

∇xF bdY (z)]f bdX (z) +∇xf bdX (z). It follows that

|Dθ,qn(t)−Dθ,q(t)−Π
[qn−q]
θ,q (t)|

≤
∫
Z

∣∣∣(qn − q)(tv|z)′∇2
xxFXεθ|Z(q(tv|z), te | z)(qn − q)(tv|z)

+ o(‖(qn − q)(tv|z)‖2)
∣∣∣ dFZ(z) ≤ ∇xgbd(te)O(‖qn − q‖2∞),
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which provides the second claim for ‖qn − q‖∞ = o(1) because ∇xgbd ∈ L2(µ).

For the third claim, consider the �rst component of ∇xFXεθ|Z(x, e | z) for any x, e

and z. With the notation X−1 ≡ (X2, . . . , Xdx) and similarly for x−1, one has

∇x1FXεθ|Z(x, e | z) = FX−1εθ|X1Z(x−1, e | x1, z)fX1|Z(x1 | z)

= E
[
1[X−1 ≤ x−1]FY |XZ(gθ(x, e) | x1, X−1, z)

∣∣ x1, z
]
fX1|Z(x1 | z),

where the �rst equality uses the de�nition of conditional probability and the second is

the law of iterated expectations. Given C4-C6, it follows that for any θn, θ ∈ Θ,

∣∣∣∇x1FXεθn |Z(x, e | z)−∇x1FXεθ|Z(x, e | z)
∣∣∣ ≤ f bdX (z)f bdY (z)gbdΘ (e)‖θn − θ‖.

The same bound holds for each of the dx components of ∇xFXεθ|Z(x, e | z), so

∥∥∥∇xFXεθn |Z(x, e | z)−∇xFXεθ|Z(x, e | z)
∥∥∥ ≤ d1/2

x f bdX (z)f bdY (z)gbdΘ (e)‖θn − θ‖

as well. Thus from the Cauchy-Schwartz inequality one has

∣∣∣Π[qn−q]
θn,q

(t)−Π
[qn−q]
θ,q (t)

∣∣∣
=
∣∣∣ ∫
Z

(qn − q)(tv|z)′[∇xFXεθn |Z(q(tv|z), te | z)

−∇xFXεθ|Z(q(tv|z), te | z)]B
t
(z) dFZ(z)

∣∣∣
≤ 2 ‖qn − q‖∞

∫
Z
d1/2
x f bdX (z)f bdY (z)gbdΘ (e)‖θn − θ‖ dFZ(z)

= gbdΘ (te)O(‖qn − q‖∞)O(‖θn − θ‖),

where the last equality uses f bdY , f
bd
X ∈ L2(FZ) from C5 and C6. This bounds implies the

third claim when ‖θn−θ‖ = o(1) and ‖qn − q‖∞ = O(1), because gbdΘ ∈ L2(µ). Q.E.D.

Lemma 5. If C1, C4 and D3 hold then {D̂θ,q − Dθ,q : θ ∈ Θ, q ∈ Q} is
√
n�

stochastically equicontinuous in L2(µ) at (θ0, q0). That is, if ‖(θn, qn)− (θ0, q0)‖ →P 0
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then
√
n‖D̂θn,qn −Dθn,qn − (D̂θ0,q0 −Dθ0,q0)‖µ →P 0.

Proof of Lemma 5. By C1 and D3, the sequence of stochastic processes At
n ≡ {GnA

t
θ,q :

(θ, q) ∈ Θ × Q} converges weakly to a mean-zero Gaussian process in l∞(Θ × Q) for

any �xed t, where Gn ≡
√
nQn ≡

√
n(En−E) and l∞(I) denotes the space of bounded

real-valued functions with domain I. This implies that At
n is stochastically equicon-

tinuous with respect to the L2(P) metric�see Example 1.5.10 of van der Vaart and

Wellner (1996). By de�nition, this means that for any ε1, ε2 > 0 there exists a δ1 > 0

such that

lim sup
n

P

 sup
(θ1,q1),(θ2,q2):P(Atθ1,q1

−Atθ2,q2 )2<δ1

∣∣Gn(Atθ1,q1)−Gn(Atθ2,q2)
∣∣ > ε1

 < ε2.

Below, I will establish that ‖(θn, qn)− (θ0, q0)‖ →P 0 implies P(Atθn,qn − A
t
θ0,q0

)2 → 0.

This in turn implies that there also exists a δ2 > 0 such that

lim sup
n

P

[
sup

(θ,q):‖(θ,q)−(θ0,q0)‖<δ2

∣∣Gn(Atθ,q)−Gn(Atθ0,q0)
∣∣ > ε1

]
< ε2.

This is equivalent to the statement that ‖(θn, qn)− (θ0, q0)‖ →P 0 implies

Gn(Atθn,qn)−Gn(Atθ0,q0)
P→ 0 (23)

for any �xed t.20 The claimed
√
n�stochastic equicontinuity of {D̂θ,q −Dθ,q : (θ, q) ∈

Θ×Q} in L2(µ) will then follow after some algebraic manipulations and an appeal to

the continuous mapping and dominated convergence theorems.

By C4, gθn(x, te) ≤ gθ0(x, te) + gbdΘ (te) ‖θn − θ0‖ and by the de�nition of the sup-

20See e.g. pp. 139-140 of Pollard (1984).
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norm, qn(tv | z) ≤ q0,k(tv | z) + ‖qn − q0‖∞. Hence for ‖(θn, qn)− (θ0, q0)‖ →P 0,

E(Atθn,qn) = P [X ≤ qn(tz | Z), Y ≤ gθn(X, te)]

≤ P
[
X ≤ q0(tz | Z) + ‖qn − q0‖∞ , Y ≤ gθ0(X, te) + gbdΘ (te) ‖θn − θ0‖

]
→ P [X ≤ q0(tz | Z), Y ≤ gθ0(X, te)] = E(Atθ0,q0),

where the convergence follows because (X,Y ) is continuously distributed conditional

on Z, given I1 and I2. By similar reasoning,

E(Atθn,qnA
t
θ0,q0) = P [X ≤ qn(tz | Z) ∧ q0(tz | Z), Y ≤ gθn(X, te) ∧ gθ0(X, te)]

≥ P
[
X ≤ q0(tz | Z)− ‖qn − q0‖∞ ,

Y ≤ gθ0(X, te)− gbdΘ (te) ‖θn − θ0‖
]
→ E(Atθ0,q0). (24)

Since E(Atθn,qn) ≥ E(Atθn,qnA
t
θ0,q0

) and E(Atθn,qnA
t
θ0,q0

) ≤ E(Atθ0,q0), it follows that

E(Atθn,qn −A
t
θ0,q0)2 = EAtθn,qn − 2 E(Atθn,qnA

t
θ0,q0) + EAtθ0,q0 → 0.

As argued above, this implies (23).

The stochastic equicontinuity of {
√
n(D̂θ,q(t) −Dθ,q(t)) : θ ∈ Θ, q ∈ Q} at (θ0, q0)

in ‖ · ‖ for �xed t now follows from decomposition (18) in Lemma 3:

√
n(D̂θn,qn(t)−Dθn,qn(t)) = Gn(Atθn,qnB

t) + En(Bt)Gn(Atθn,qn) + E(Atθn,qn)Gn(Bt)

= Gn(Atθ0,q0B
t) + oP(1) + En(Bt)Gn(Atθ0,q0) +OP(1)oP(1)

+ E(Atθ0,q0)Gn(Bt) + o(1)OP(1)

=
√
n(D̂θ0,q0(t)−Dθ0,q0(t)) + oP(1), (25)

where the second equality uses (23), E(Atθn,qn) = E(Atθ0,q0) + oP(1) and Gn(Bt) =

OP(1). The desired
√
n�stochastic equicontinuity in L2(µ), i.e.

√
n‖D̂θn,qn −Dθn,qn −
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(D̂θ0,q0 −Dθ0,q0)‖µ = oP(1), then follows after applications of the continuous mapping

and dominated convergence theorems similar to (19).21 Q.E.D.

Lemma 6. Given Assumptions I, C1 and D3, {
√
nD̂θ0,q0(t) : t ∈ T } converges weakly

in l∞(T ) to a mean-zero Gaussian process with covariance function given by σ in

(12). Moreover, for every t,
√
nD̂θ0,q0(t) has the Bahadur representation

√
nD̂θ0,q0(t) =

√
nEn χ(t) + oP(1) where χ(t) ≡ [Atθ0,q0 −E(Atθ0,q0)][Bt −E(Bt)] has population mean

zero and the remainder term is uniform over t ∈ T .

Proof of Lemma 6. Some algebra together with Eχ(t) = Dθ0,q0(t) = 0 shows that

√
nD̂θ0,q0(t) = Gn(χ(t))−Qn(Atθ0,q0)Gn(Bt), (26)

for all t. I claim that {χ(t) : t ∈ T } is a Donsker class. By Example 2.10.8 of van der

Vaart and Wellner (1996), this follows if both {Atθ0,q0 : t ∈ T } and {Bt : t ∈ T } are

Donsker classes, because if so then {Atθ0,q0−E(Atθ0,q0) : t ∈ T } and {Bt−E(Bt) : t ∈ T }

are uniformly bounded Donsker classes and hence their pairwise product, which contains

{χ(t) : t ∈ T }, is also Donsker. The collection {Bt : t ∈ T } is the canonical example of a

Donsker class. For {Atθ0,q0 : t ∈ T }, note that for any t, Atθ0,q0 = Ateθ0
∏dx
k=1A

tvk
q0,k , where

Ateθ0(w) ≡ 1[wy ≤ gθ0(wx, te)] and A
tvk
q0,k(w) ≡ 1[wxk ≤ q0,k(tvk |wz)]. The collection

{Ateθ0 : te ∈ E ⊆ R} is increasing in the index, te, because if te ≤ t′e then gθ0(x, te) ≤

gθ0(x, t′e) for all x ∈ X by I2 and hence

Ateθ0(w) ≡ 1[wy ≤ gθ0(wx, te)] ≤ 1[wy ≤ gθ0(wx, t
′
e)] ≡ A

t′e
θ0

(w)

for every w. Lemma 9.10 of Kosorok (2008) establishes that collections with this

property are VC-subgraph and hence Donsker. The same is true of the collection

{Atvkq0,k : tvk ∈ (0, 1)} because q0,k ∈ Qk is increasing in tvk . Appealing again to Ex-

21Note that this is the dominated convergence theorem for convergence in probability, which is an extension
of the standard dominated convergence theorem, see e.g. Corollary 6.3.2 of Resnick (1999).
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ample 2.10.8 of van der Vaart and Wellner (1996), it follows that {Atθ0,q0 : t ∈ T } is

Donsker and thus that {χ(t) : t ∈ T } is also Donsker.

Returning to (26), the Donsker property of {χ(t) : t ∈ T } together with C1 imply

that the �rst term converges weakly in l∞(T ) to a mean-zero Gaussian process. The

Donsker properties of {Atθ0,q0 : t ∈ T } and {Bt : t ∈ T } with C1 imply that the second

term is oP(1)OP(1) = oP(1) uniformly in t. An application of Slutsky's Theorem

establishes the weak convergence of {
√
nD̂θ0,q0(t) : t ∈ T }. This also shows that

√
nD̂θ0,q0(t) = Gnχ(t) + oP(1) =

√
nEn χ(t) + oP(1) uniformly in t.

To compute the covariance function of this limiting process, �rst observe that

E[Atθ0,q0A
t̃
θ0,q0 ] = E

[
P
[
X ≤ q0(tv ∧ t̃v|Z), Y ≤ gθ0(X, te ∧ t̃e)

∣∣ Z]]
= E

[
P
[
X ≤ q0(tv ∧ t̃v|Z), εθ0 ≤ te ∧ t̃e

∣∣ Z]] = Cθ0(tv ∧ t̃v, Fεθ0 (te ∧ t̃e)),

where the second equality uses Y = gθ0(X, εθ0) and the last uses Sklar's Theorem and

Proposition 1. Similarly, E(Atθ0,q0) = Cθ0(tv, Fεθ0 (te)) and hence

E(χ(t)χ(t̃)) = E
(

E
[
(Atθ0,q0 −E(Atθ0,q0))(At̃θ0,q0 −E(At̃θ0,q0))

∣∣∣ Z]
× (Bt −E(Bt))(B t̃ −E(B t̃))

)
=
[
Cθ0(tv ∧ t̃v, Fεθ0 (te ∧ t̃e))− Cθ0(tv, Fεθ0 (te))Cθ0(t̃v, Fεθ0 (t̃e))

]
×
[
FZ(tz ∧ t̃z)− FZ(tz)FZ(t̃z)

]
,

which is equal to σ(t, t̃) as given in (12). Q.E.D.

Proof of Theorem 2. The argument follows the same strategy as Theorem 3.3 of

Pakes and Pollard (1989) and Theorem 2 of Chen et al. (2003). First, I establish that
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θ̂ = θ0 +OP(n−1/2). By the triangle inequality and Lemma 4 with D5 and D6,22

‖D
θ̂,q0
‖µ ≤ ‖Dθ̂,q̂

‖µ + ‖D
θ̂,q̂
−D

θ̂,q0
−Π

[q̂−q0]

θ̂,q0
‖µ + ‖Π[q̂−q0]

θ̂,q0
−Π

[q̂−q0]
θ0,q0

‖µ + ‖Π[q̂−q0]
θ0,q0

‖µ

= ‖D
θ̂,q̂
‖µ + o(‖θ̂ − θ0‖) +OP(n−1/2). (27)

From Lemma 5 followed by the triangle inequality and the implication of Lemma 6 that

‖D̂θ0,q0‖µ = OP(n−1/2), one has

‖D
θ̂,q̂
‖µ = ‖D̂

θ̂,q̂
− D̂θ0,q0 +Dθ0,q0‖µ + oP(n−1/2) ≤ ‖D̂

θ̂,q̂
‖µ +OP(n−1/2), (28)

where Dθ0,q0 = 0 by (2). Using the de�nition of θ̂ and Lemma 5,

‖D̂
θ̂,q̂
‖µ ≤ ‖D̂θ0,q̂‖µ + oP(n−1/2)

= ‖D̂θ0,q0 −Dθ0,q̂ +Dθ0,q0‖µ + oP(n−1/2)

≤ ‖Dθ0,q̂ −Dθ0,q0 −Π
[q̂−q0]
θ0,q0

‖µ + ‖Π[q̂−q0]
θ0,q0

‖µ +OP(n−1/2), (29)

where the second inequality uses the triangle inequality with ‖D̂θ0,q0‖µ = OP(n−1/2).

Applying Lemma 4 with D5 and D6 in (29), one has ‖D̂
θ̂,q̂
‖µ ≤ OP(n−1/2). Combined

with (27) and (28), this yields

‖D
θ̂,q0
‖µ ≤ o(‖θ̂ − θ0‖) +OP(n−1/2). (30)

For each t, a Taylor expansion of D
θ̂,q0

(t) around Dθ0,q0(t) = 0 gives D
θ̂,q0

(t) = (θ̂ −

θ0)′∆0(t) + o(‖θ̂ − θ0‖), where the di�erentiability of Dθ,q0(t) at θ0 follows from D1

and D2, given the bounds on ∇θgθ0 and fY |XZ provided by C4 and C5�see (10).

Assumption D4 implies that (θ̂ − θ0)′∆0(t) 6= 0 on a non-negligible subset of T which

22A more precise proof would multiply all quantities by indicators for the event that q̂ ∈ Q and then
appeal to the assumption in D5 that this event happens with probability approaching one. It is common in
the literature to ignore this distinction and I will do so as well.
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means there is a constant κ∆ > 0 such that

‖D
θ̂,q0
‖µ = ‖(θ̂ − θ0)′∆0 + o(‖θ̂ − θ0‖)‖µ ≥ ‖θ̂ − θ0‖κ∆ + o(‖θ̂ − θ0‖). (31)

Together with (30), one has OP(1) ≥
√
n‖θ̂−θ0‖κ∆ +o(

√
n‖θ̂−θ0‖), which shows that

θ̂ = θ0 +OP(n−1/2), as claimed.

Next, I show that
√
n(θ̂ − θ0) is asymptotically normal. De�ne

L̂θ(t) ≡ D̂θ0,q0(t) + (θ − θ0)′∆0(t) + Π
[q̂−q0]
θ0,q0

(t)

as a linear approximation of D̂θ,q̂(t) for θ near θ0. For any sequence θn →P θ0, one has

‖D̂θn,q̂ − L̂θn‖µ ≤ ‖D̂θn,q̂ − D̂θ0,q0 −Dθn,q̂‖µ + ‖Dθn,q̂ − (θn − θ0)′∆0 −Π
[q̂−q0]
θ0,q0

‖µ.

The �rst term is oP(n−1/2) by Lemma 5 and the second term is bounded above by

‖Dθn,q̂ −Dθn,q0 −Π
[q̂−q0]
θn,q0

‖µ + ‖Dθn,q0 − (θn − θ0)′∆0‖µ + ‖Π[q̂−q0]
θn,q0

−Π
[q̂−q0]
θ0,q0

‖µ

= oP(n−1/2) + o(‖θn − θ0‖),

where the rates for the �rst and third terms are due to Lemma 4 with D5, and that for

the second term is from the de�nition of a derivative. The previous display is oP(n−1/2)

if θn = θ0 +OP(n−1/2), which implies that L̂θn su�ciently well approximates D̂θn,q̂ for

such sequences, i.e. ‖D̂θn,q̂ − L̂θn‖µ = oP(n−1/2).

The vector that minimizes ‖L̂θ‖µ is the θ̃ such that (θ̃−θ0)′∆0 is the L2(µ)-projection

of −D̂θ0,q0 −Π
[q̂−q0]
θ0,q0

onto the subspace of L2(µ) spanned by the components of ∆0�see

e.g. pg. 51 of Luenberger (1968). Solving the normal equations for this projection and

scaling by
√
n provides

√
n(θ̃ − θ0) = −∆

−1
0

∫
T

∆0(t)
√
n
[
D̂θ0,q0(t) + Π

[q̂−q0]
θ0,q0

(t)
]
dµ(t), (32)
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where ∆0 ≡
∫
T ∆0(t)∆0(t)′ dµ(t) is invertible by D4.23 From Lemma 6 and D6,

∫
T

∆0(t)
√
n
[
D̂θ0,q0(t) + Π

[q̂−q0]
θ0,q0

(t)
]
dµ(t)

=

∫
T

∆0(t)
[√
nEn (χ(t) + ψ(t)) + oP(1)

]
dµ(t) =

√
nEn ξ + oP(1),

for ξ ≡
∫
T ∆0(t)[χ(t) + ψ(t)] dµ(t). The remainder term is oP(1) because the Bahadur

representations are uniform over t ∈ T and ∆0 ∈ L2(µ).24 By Fubini's Theorem,

Lemma 6 and D6, E ξ =
∫
T ∆0(t) E (χ(t) + ψ(t)) dµ(t) = 0 and

E ξξ′ =

∫
T ×T

∆0(t)∆0(t̃)′E
[
(χ(t) + ψ(t))(χ(t̃) + ψ(t̃))

]
dµ(t) dµ(t̃)

=

∫
T ×T

∆0(t)∆0(t̃)′
[
σ(t, t̃) + ν(t, t̃)

]
dµ(t) dµ(t̃) ≡ Σ0,

which is �nite because both σ(t, t̃) and ν(t, t̃) are uniformly bounded, and ∆0 ∈ L2(µ).

Hence by the central limit theorem,
√
nEn ξ  N(0,Σ0). It follows from (32) that

√
n(θ̃ − θ0) N(0,∆

−1
0 Σ0∆

−1
0 ), where I note that ∆0 is symmetric.

The remainder of the proof shows that
√
n(θ̂− θ0) =

√
n(θ̃− θ0) + oP(1). I continue

to follow the approach of Pakes and Pollard (1989). Like those authors, I assume for

simplicity that θ̃ is always in a small neighborhood of θ0 that is strictly contained in

Θ. Due to D1 and the already established result that θ̃ →P θ0, this will be true with

probability approaching one, i.e. the event that θ̃ is not in such a neighborhood is

asymptotically negligible.

As previously shown, L̂
θ̂
and L̂

θ̃
are oP(n−1/2) approximations in L2(µ) of D̂

θ̂,q̂

and D̂
θ̃,q̂
, because both θ̂ = θ0 + OP(n−1/2) and θ̃ = θ0 + OP(n−1/2). Hence, by the

triangle inequality, ‖L̂
θ̂
‖µ−‖D̂θ̂,q̂

‖µ ≤ ‖L̂θ̂−D̂θ̂,q̂
‖µ = oP(n−1/2) and ‖D̂

θ̃,q̂
‖µ−‖L̂θ̃‖µ ≤

23For otherwise, there would exist a non-zero vector a ∈ Rdθ such that a′∆0a =∫
T (a′∆0(t))(a′∆0(t))′ dµ(t) = 0. This implies that a′∆0(t) = 0 for µ�a.e. t ∈ T and a non-zero a, in
contradiction with D4.

24The latter follows from C4 and C5, as can be seen from (10).
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‖D̂
θ̃,q̂
− L̂

θ̃
‖µ = oP(n−1/2). Using the de�nition of θ̂, it follows that

0 ≤ ‖L̂
θ̂
‖µ ≤ ‖D̂θ̂,q̂

‖µ + oP(n−1/2) ≤ ‖D̂
θ̃,q̂
‖µ + oP(n−1/2) ≤ ‖L̂

θ̃
‖µ + oP(n−1/2),

i.e. that ‖L̂
θ̂
‖µ = ‖L̂

θ̃
‖µ+oP(n−1/2). By the triangle inequality with Lemma 6, D6 and

θ̃ = θ0+OP(n−1/2), one has ‖L̂
θ̃
‖µ = OP(n−1/2) and so ‖L̂

θ̂
‖2µ = (‖L̂

θ̃
‖µ+oP(n−1/2))2 =

‖L̂
θ̃
‖2µ + oP(n−1).

Next, add and subtract (θ̃ − θ0)′∆0 to L̂
θ̂
, obtaining

‖L̂
θ̂
‖2µ = ‖D̂θ0,q0 + (θ̃ − θ0)′∆0 + Π

[q̂−q0]
θ0,q0

+ (θ̂ − θ̃)′∆0‖2µ

= ‖L̂
θ̃
‖2µ + 2(θ̂ − θ̃)′

∫
T
L̂
θ̃
(t)∆0(t) dµ(t) + ‖(θ̂ − θ̃)′∆0‖2µ.

The inner product term in this expression is equal to 0 because L̂
θ̃
, i.e. the residual

from projecting −D̂θ0,q0−Π
[q̂−q0]
θ0,q0

onto the subspace spanned by ∆0, must be orthogonal

to ∆0 in L2(µ) (Luenberger (1968), pg. 51). Hence, ‖L̂
θ̃
‖2µ + ‖(θ̂− θ̃)′∆0‖2µ = ‖L̂

θ̂
‖2µ =

‖L̂
θ̃
‖2µ + oP(n−1), i.e. ‖(θ̂ − θ̃)′∆0‖2µ = oP(n−1). By the same argument as in (31),

oP(n−1/2) = ‖(θ̂ − θ̃)′∆0‖µ ≥ ‖θ̂ − θ̃‖κ∆ for κ∆ > 0, and so ‖θ̂ − θ̃‖ = oP(n−1/2).

Given the previously derived limiting distribution of
√
n(θ̃ − θ0), one has by Slutsky's

Theorem that
√
n(θ̂ − θ0) =

√
n(θ̃ − θ0) + oP(1) N(0,∆

−1
0 Σ0∆

−1
0 ). Q.E.D.

Proof of Proposition 2. For any θ, q and t, writeAtθ,q = Ateθ
∏dx
k=1A

tvk
qk , whereA

te
θ (w) ≡

1[wy ≤ gθ(wx, te)] and A
tvk
qk (w) ≡ 1[wxk ≤ qk(tvk |wz)] are indicator functions de�ned on

W. Note that {w ∈ W : wy ≤ gθ(wx, te)} = {(y, x, z) ∈ R×X ×Z : y ≤ gθ(x, te)}∩W

is the subgraph of gθ(·, te) intersected with W.25 Under 1a or 1b, the collection of indi-

cator functions for subgraphs of {gθ(·, te) : θ ∈ Θ} is Donsker by, respectively, Lemma

2.6.15 or Corollary 2.7.3 of van der Vaart and Wellner (1996), together with the uni-

form central limit theorem results in their Section 2.5. A similar comment applies to

25Subgraphs are often de�ned with a strict inequality. That the following analysis also applies to subgraphs
de�ned with a weak inequality can be seen by Theorem 9.30 of Kosorok (2008), which shows that the pointwise
closure of a Donsker class is also Donsker.
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the collection {Atvkqk : qk ∈ Qk} for every k, given 2a or 2b. It follows from Example

2.10.8 of van der Vaart and Wellner (1996) that {Atθ,q : θ ∈ Θ, q ∈ Q}, as the product

of these uniformly bounded Donsker classes, is also Donsker, which is Assumption D3.

Donsker classes are Glivenko-Cantelli, so C3 is also satis�ed. Q.E.D.

A.3 Bootstrap

The proof of Theorem 3 requires Lemmas 5? and 6?, which are bootstrap counterparts

to Lemmas 5 and 6. Throughout this appendix statements of P?�convergence can be

understood to hold a.s.�P except where otherwise noted.

Lemma 5?. Assumptions C1, C4 and D3 imply that
√
n‖D?

θn,qn
− D̂θn,qn − (D?

θ0,q0
−

D̂θ0,q0)‖µ →P? 0, for any sequence (θn, qn)→P? (θ0, q0).

Proof of Lemma 5?. Let G?
n ≡

√
n(E?

n−En). Giné and Zinn (1990) show that for

almost every realization of {Wi}ni=1, the bootstrapped empirical process {G?
nA

t
θ,q :

(θ, q) ∈ Θ × Q} converges weakly under P? to the same limiting process that At
n

from Lemma 5 does.26 The same argument as in Lemma 5 shows that under C4 this

implies G?
n(Atθn,qn) − G?

n(Atθ0,q0) →P? 0 for any sequence (θn, qn) →P? (θ0, q0). The

claim then follows from an argument analogous to that in Lemma 5. Q.E.D.

Lemma 6?. Suppose Assumptions I, C1 and D3 hold. Then {
√
n(D?

θ0,q0
(t)−D̂θ0,q0(t)) :

t ∈ T } converges weakly with respect to P? in l∞(T ) to a mean-zero Gaussian process

with covariance function σ. Moreover, for every t,
√
n(D?

θ0,q0
(t)−D̂θ0,q0(t)) = G?

nχ(t)+

oP?(1) + oa.s.(1) where the remainder terms are uniform over T .

Proof of Lemma 6?. Using algebra analogous to that in the derivation of (26),

D?
θ0,q0(t) = E?

n(χ(t))− [Q?
n(Atθ0,q0) + Qn(Atθ0,q0)][Q?

n(Bt) + Qn(Bt)], (33)

26The measurability and square-integrable envelope requirements in Giné and Zinn (1990) are satis�ed
easily in this setting.
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where Q?
n ≡ E?

n−En. Combining (26) and (33), one has

√
n
(
D?
θ0,q0(t)− D̂θ0,q0(t)

)
= G?

n(χ(t)) + Qn(Atθ0,q0)Gn(Bt) (34)

−
√
n[Q?

n(Atθ0,q0) + Qn(Atθ0,q0)][Q?
n(Bt) + Qn(Bt)].

Given the entropy analysis for {χ(t) : t ∈ T } from Lemma 6 and the results of Giné and

Zinn (1990), {G?
nχ(t) : t ∈ T } converges weakly under P? to a mean-zero Gaussian pro-

cess with covariance function σ. Their results also imply that Q?
n(Atθ0,q0) = OP?(n

−1/2)

and Q?
n(Bt) = OP?(n

−1/2). Since Qn(Atθ0,q0) = oa.s.(1) by C3 and Qn(Bt) = oa.s.(1) by

the strong law of large numbers, the third term in (34) is
√
nOP?(n

−1) = oP?(1).

From Lemma 6 and the strong law of large numbers, the second term in (34) is

OP(1)oa.s.(1) = oa.s.(1). The result now follows from (34) and Slutsky's Theorem.

The uniformity of the remainders over t ∈ T follows from the same arguments as in

Lemma 6. Q.E.D.

Proof of Theorem 3. First, it needs to be veri�ed that θ? →P? θ0. The argument for

this is the same as in Theorem 1, except that it requires supθ∈Θ,q∈Q ‖D?
θ,q−Dθ,q‖µ →P?

0, i.e. a bootstrap counterpart of Lemma 3. Using Lemma 3 and the triangle inequality,

this is implied by supθ∈Θ,q∈Q ‖D?
θ,q − D̂θ,q‖µ →P? 0. The latter follows from a decom-

position analogous to (24) in Lemma 3, using the result of Giné and Zinn (1990) that

supθ,q |G?
n(Atθ0,q0B

t)| →P? 0 under C1 and C3. The other details of the consistency

argument are the same and so are omitted.

The rest of the proof is analogous to that for Theorem 2. In a supplementary doc-

ument (available from the author on request), I show that θ? = θ0 + OP?(n
−1/2) +

OP(n−1/2) by repeatedly applying Lemmas 4, 5, 5?, 6 and 6?, together with Assump-

tions D?. In this document it is also shown that the linear approximation

L?θ(t) = D?
θ0,q0(t) + (θ − θ0)′∆0(t) + Π

[q?−q0]
θ0,q0

(t)

40



provides an oP?(n
−1/2) + oP(n−1/2) approximation to D?

θn,q?
for sequences θn within

OP?(n
−1/2) +OP(n−1/2) of θ0. An argument in this document further establishes that

the minimizer of ‖L?θ‖µ, call it θ̃?, satis�es

√
n(θ̃? − θ̂) =

√
n(E?

n−En)ξ + oP?(1) + oP(1),

with ξ de�ned as in the proof of Theorem 2.

Theorem 2.2 of Bickel and Freedman (1981) shows that
√
n(E?

n−En)ξ  N(0,Σ0)

with respect to P? a.s. (P). Theorem 20.5(ii) of Billingsley (1995) can then be used

to show that this implies that
√
n(θ̃? − θ̂) N(0,∆

−1
0 Σ0∆

−1
0 ) in P?�probability with

P�probability approaching 1. See Proposition O(xiii) of Hahn (1993) for a detailed

statement and justi�cation. The same argument as in Theorem 2 shows that
√
n‖θ? −

θ̃?‖ = oP?(1) + oP(1), so I omit the details. It follows that
√
n(θ? − θ̂) =

√
n(θ̃? −

θ̂) + oP?(1) + oP(1), which establishes the claim of the theorem after appealing again

to Hahn's (1993) Proposition O(xiii).

Q.E.D.

References

Abrevaya, J. (1999): �Computation of the maximum rank correlation estimator,� Economics
Letters, 62, 279�285. 9

Andrews, D. W. K. (1994): �Asymptotics for Semiparametric Econometric Models Via
Stochastic Equicontinuity,� Econometrica, 62, 43�72. 12

Bickel, P. J. and D. A. Freedman (1981): �Some Asymptotic Theory for the Bootstrap,�
The Annals of Statistics, 9, 1196�1217. 19, 41

Billingsley, P. (1995): Probability and measure, New York [u.a.]: Wiley. 41

Brown, D. J. and R. Matzkin (1998): �Estimation of Nonparametric Functions in Simulta-
neous Equations Models, With an Application to Consumer Demand,� Cowles Foundation
Discussion Paper 1175. 7

Brown, D. J. and M. H. Wegkamp (2002): �Weighted Minimum Mean-Square Distance
from Independence Estimation,� Econometrica, 70, 2035�2051. 6, 7, 8, 14, 22

41



Card, D. (1995): �Using Geographic Variation in College Proximity to Estimate the Return to
Schooling,� in Aspects of Labour Market Behaviour: Essays in Honour of John Vanderkamp,
ed. by L. N. Christo�des, K. E. Grant, and R. Swidinsky, Toronto: University of Toronto
Press, 201�222. 4, 23, 24

��� (2001): �Estimating the Return to Schooling: Progress on Some Persistent Econometric
Problems,� Econometrica, 69, 1127�1160. 4

Carrasco, M. and J.-P. Florens (2000): �Generalization of GMM to a Continuum of
Moment Conditions,� Econometric Theory, 16, 797�834. 16

Chaudhuri, P., K. Doksum, and A. Samarov (1997): �On Average Derivative Quantile
Regression,� The Annals of Statistics, 25, 715�744. 19, 20

Chen, X., O. Linton, and I. van Keilegom (2003): �Estimation of Semiparametric Models
When the Criterion Function Is Not Smooth,� Econometrica, 71, 1591�1608. 12, 34

Chen, X. and D. Pouzo (2012): �Estimation of Nonparametric Conditional Moment Models
With Possibly Nonsmooth Generalized Residuals,� Econometrica, 80, 277�321. 20

Chernozhukov, V., I. Fernández-Val, and B. Melly (2009): �Inference on counterfac-
tual distributions,� Cemmap working paper CWP09/09. 19

Chesher, A. (2003): �Identi�cation in Nonseparable Models,� Econometrica, 71, 1405�1441.
2

D'Haultf÷uille, X. and P. Février (2015): �Identi�cation of Nonseparable Triangular
Models With Discrete Instruments,� Econometrica, 3, 1199�1210. 3

Dominguez, M. A. and I. N. Lobato (2004): �Consistent Estimation of Models De�ned by
Conditional Moment Restrictions,� Econometrica, 72, 1601�1615. 20

Florens, J. P., J. J. Heckman, C. Meghir, and E. Vytlacil (2008): �Identi�cation
of Treatment E�ects Using Control Functions in Models With Continuous, Endogenous
Treatment and Heterogeneous E�ects,� Econometrica, 76, 1191�1206. 2

Giné, E. and J. Zinn (1990): �Bootstrapping General Empirical Measures,� The Annals of
Probability, 18, 851�869. 17, 18, 39, 40

Hahn, J. (1993): �Three Essays in Econometrics,� Ph.D. thesis, Harvard University. 41

��� (1996): �A Note on Bootstrapping Generalized Method of Moments Estimators,� Econo-
metric Theory, 12, 187�197. 17

Heckman, J. J. (2001): �Micro Data, Heterogeneity, and the Evaluation of Public Policy:
Nobel Lecture,� The Journal of Political Economy, 109, 673�748. 2

Holmström, K., A. O. Göran, and M. M. Edvall (2010): User's Guide for TOMLAB 7.
9

Imbens, G. W. (2004): �Nonparametric Estimation of Average Treatment E�ects under Exo-
geneity: A Review,� The Review of Economics and Statistics, 86, 4�29. 2

Imbens, G. W. and W. K. Newey (2009): �Identi�cation and Estimation of Triangular
Simultaneous Equations Models Without Additivity,� Econometrica, 77, 1481�1512. 2

42



Jones, D. R., C. D. Perttunen, and B. E. Stuckman (1993): �Lipschitzian optimization
without the Lipschitz constant,� Journal of Optimization Theory and Applications, 79, 157�
181. 9

Koenker, R. (2005): Quantile Regression, Cambridge University Press. 2, 14

Koenker, R. and G. Bassett (1978): �Regression Quantiles,� Econometrica, 46, 33�50. 19

Komunjer, I. and A. Santos (2010): �Semi-parametric estimation of non-separable models:
a minimum distance from independence approach,� Econometrics Journal, 13, S28�S55. 6,
7

Kosorok, M. R. (2008): Introduction to empirical processes and semiparametric inference,
New York: Springer. 33, 38

Linton, O., S. Sperlich, and I. van Keilegom (2008): �Estimation of a Semiparametric
Transformation Model,� The Annals of Statistics, 36, 686�718. 6

Luenberger, D. G. (1968): Optimization by vector space methods, New York: Wiley. 36, 38

Manski, C. F. (1983): �Closest Empirical Distribution Estimation,� Econometrica, 51, 305�
319. 6, 7

Matzkin, R. L. (2003): �Nonparametric Estimation of Nonadditive Random Functions,�
Econometrica, 71, 1339�1375. 2, 21

Nelsen, R. (2006): An introduction to copulas, New York: Springer. 26

Newey, W. K. (1994): �The Asymptotic Variance of Semiparametric Estimators,� Economet-
rica, 62, 1349�1382. 12, 14, 20

Newey, W. K. and D. McFadden (1994): �Chapter 36 Large sample estimation and hy-
pothesis testing,� in Handbook of Econometrics, ed. by R. F. Engle and D. L. McFadden,
Elsevier, vol. Volume 4, 2111�2245. 11

Pakes, A. and D. Pollard (1989): �Simulation and the Asymptotics of Optimization Esti-
mators,� Econometrica, 57, 1027�1057. 12, 34, 37

Pollard, D. (1984): Convergence of stochastic processes, New York: Springer-Verlag. 15, 31

Resnick, S. I. (1999): A Probability Path, Birkhäuser Boston. 33

Santos, A. (2011): �Semiparametric Estimation of Invertible Models,� Working paper. 6

Torgovitsky, A. (2010): �Identi�cation and Estimation of Nonparametric Quantile Regres-
sions with Endogeneity,� Job market paper. 3

��� (2015): �Identi�cation of Nonseparable Models Using Instruments With Small Support,�
Econometrica, 83, 1185�1197. 2, 3, 4, 5, 6, 24

van der Vaart, A. W. (1998): Asymptotic statistics, New York: Cambridge University Press.
18

van der Vaart, A. W. and J. A. Wellner (1996): Weak Convergence and Empirical
Processes : With Applications to Statistics., New York: Springer. 15, 31, 33, 34, 38, 39

43



N = 400 N = 800 N = 1600

γ |Z| bias (std) mse bias (std) mse bias (std) mse

θ1

.25
2 -.0372 (.0608) .0051 -.0180 (.0416) .0021 -.0082 (.0272) .0008
4 -.0577 (.0649) .0075 -.0303 (.0446) .0029 -.0156 (.0294) .0011
8 -.0628 (.0653) .0082 -.0345 (.0457) .0033 -.0176 (.0288) .0011

.35
2 -.0185 (.0418) .0021 -.0086 (.0285) .0009 -.0041 (.0190) .0004
4 -.0314 (.0468) .0032 -.0147 (.0300) .0011 -.0078 (.0195) .0004
8 -.0348 (.0480) .0035 -.0165 (.0306) .0012 -.0087 (.0195) .0005

θ2

.25
2 .1851 (.3661) .1683 .0801 (.2418) .0649 .0423 (.1556) .0260
4 .2870 (.3783) .2255 .1358 (.2506) .0812 .0727 (.1659) .0328
8 .3148 (.3748) .2396 .1553 (.2532) .0882 .0782 (.1653) .0334

.35
2 .0922 (.2430) .0676 .0388 (.1623) .0278 .0217 (.1082) .0122
4 .1517 (.2651) .0933 .0669 (.1692) .0331 .0362 (.1111) .0137
8 .1681 (.2605) .0961 .0732 (.1706) .0344 .0383 (.1132) .0143

θ3

.25
2 .0132 (.0858) .0075 .0108 (.0499) .0026 .0021 (.0338) .0011
4 .0223 (.0810) .0071 .0185 (.0553) .0034 .0081 (.0358) .0014
8 .0236 (.0848) .0077 .0209 (.0558) .0036 .0108 (.0351) .0014

.35
2 .0065 (.0556) .0031 .0050 (.0342) .0012 .0007 (.0238) .0006
4 .0140 (.0569) .0034 .0086 (.0381) .0015 .0042 (.0241) .0006
8 .0157 (.0575) .0036 .0106 (.0379) .0015 .0056 (.0230) .0006

Table 1: Monte Carlo results for the performance of θ̂. The strength of the instrument is
controlled by γ. The number of points of support for the instrument is denoted as |Z|. There
were 500 replications for each experiment.

nominal level

N .990 .950 .900

100 .991 .947 .913

200 .992 .948 .895

400 .985 .945 .893

Table 2: Actual coverage probabilities for bootstrap con�dence intervals of θ2. These exper-
iments are the result of 1000 replications with 500 bootstrap samples for each replication.
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MDIV

x t OLS OLS2 IV (1) (2) (3) (4)

.0437 .0448 .1497 .1700 .1732 .1325 .1984

12 0.10 .0501 .0546 .2167 .2258 .2308 .2042 .2281

.0565 .0644 .2837 .3066 .3119 .3285 .3815

.1525 .1880

0.25 �"� �"� �"� �"� �"� .2137 .2297

.3116 .3439

.1681 .1767

0.50 �"� �"� �"� �"� �"� .2242 .2314

.3027 .3211

.1713 .1673

0.75 �"� �"� �"� �"� �"� .2350 .2331

.3204 .3086

.1658 .1530

0.90 �"� �"� �"� �"� �"� .2433 .2347

.3496 .2948

.0425 .1325 .1294

14 0.10 �"� .0491 �"� �"� .1963 �"� .1853

.0557 .2948 .3417

.1319

0.25 �"� �"� �"� �"� �"� �"� .1869

.3083

.1217

0.50 �"� �"� �"� �"� �"� �"� .1886

.2738

.1122

0.75 �"� �"� �"� �"� �"� �"� .1903

.2539

.1024

0.90 �"� �"� �"� �"� �"� �"� .1919

.2417

.0311 .0618 .0666

16 0.10 �"� .0437 �"� �"� .1617 �"� .1425

.0562 .3030 .3414

.0554

0.25 �"� �"� �"� �"� �"� �"� .1441

.3034

.0435

0.50 �"� �"� �"� �"� �"� �"� .1458

.2625

.0322

0.75 �"� �"� �"� �"� �"� �"� .1475

.2383

.0221

0.90 �"� �"� �"� �"� �"� �"� .1491

.2329

Table 3: Estimated marginal e�ects for the empirical illustration evaluated at various com-
binations of x and Qε(t), where the latter is estimated from the quantiles of g−1

θ̂
(Xi, Yi). The

large number in each cell is the point estimate and the small numbers are lower and upper
bounds of 95% con�dence regions. The ditto marks (�"�) indicate that by assumption the
model would predict the same marginal e�ects as in the cell above it.

45


	Introduction
	Model and Motivation
	Estimation
	Asymptotic Theory
	Consistency
	Asymptotic Normality
	Bootstrap
	First-Step Quantile Estimators
	Covariates

	Monte Carlo
	Empirical Illustration
	Conclusion
	Proofs
	Consistency
	Asymptotic Normality
	Bootstrap


