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ABSTRACT
The synthetic control (SC) method is widely used in comparative case studies to adjust for differences in
pretreatment characteristics. SC limits extrapolation bias at the potential expense of interpolation bias,
whereas traditional matching estimators have the opposite properties. This complementarity motives us
to propose a matching and synthetic control (or MASC) estimator as a model averaging estimator that
combines the standard SC and matching estimators. We show how to use a rolling-origin cross-validation
procedure to train the MASC to resolve tradeoffs between interpolation and extrapolation bias. We use a
series of empirically based placebo and Monte Carlo simulations to shed light on when the SC, matching,
MASC and penalized SC estimators do (and do not) perform well. Then, we apply these estimators to
examine the economic costs of conflicts in the context of Spain.
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1. Introduction

Estimating the causal effect of an intervention (treatment)
is a common task across the social sciences. Longitudinal
approaches based on difference-in-differences have long been
used for this task. However, the credibility of these methods
can be strained when the pretreatment trends or characteristics
of the untreated units differ significantly from those of the
treated units. This concern can be particularly salient in
comparative case studies with units that are large aggregates,
such as countries or states. For these applications, the synthetic
control (SC) method of Abadie and Gardeazabal (2003) and
Abadie, Diamond, and Hainmueller (2010, 2015) provides an
alluring alternative.

The motivation of the SC method is to limit the extrapolation
bias that can occur when units with different pre-treatment
characteristics are combined using a traditional adjustment,
such as a linear regression. However, the SC estimator inter-
polates by using a convex weighted average of the untreated
units to create a synthetic untreated unit with pre-treatment
characteristics similar to those of the treated unit. As observed
by Abadie, Diamond, and Hainmueller (2010, pp. 495–496),
this makes the SC estimator susceptible to interpolation bias. In
Section 2.2, we formalize this observation by showing that SC
will avoid interpolation bias only if the conditional mean of the
outcome is linear in pretreatment characteristics.

As Abadie and L’Hour (2020) observed, the SC estimator
belongs to a class of weighting estimators with weights based
on pre-treatment characteristics. Many other commonly used
estimators in this class, such as nearest neighbor matching,
suffer from the opposite drawback of potentially extrapolating
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too much when suitable untreated units are unavailable. That is,
SC controls extrapolation bias while being susceptible to inter-
polation bias, whereas matching has the opposite properties.
This complementarity suggests that an estimator that adaptively
combines the SC and matching estimators may be particularly
attractive.

In Section 2.5, we propose the matching and synthetic
control (or MASC) estimator as a model averaging estimator
that combines the standard SC and matching estimators. We
show how averaging these two purposefully chosen estimators
can defend against the weaknesses of both while preserving
their strengths. In Section 3, we show how to choose the
weight assigned to each estimator in the MASC through cross-
validation, as in Wolpert (1992), Breiman (1996), and Hansen
and Racine (2012). Our cross-validation criterion uses an
evaluation concept referred to as rolling-origin recalibration
in the forecasting literature (e.g., Tashman 2000). One attractive
feature of the MASC estimator is that its cross-validated weight
can be solved for in closed-form, making it only marginally
more difficult to implement than the usual SC estimator.
An R package for implementing the MASC is available at
https://github.com/maxkllgg/masc.

In Sections 4 and 5, we provide evidence that the MASC
estimator performs well in practice. In Section 4, we conduct
a placebo study using the data on Spanish terrorism analyzed
by Abadie and Gardeazabal (2003). This allows us to evaluate
the performance of the matching, SC, penalized SC (Abadie and
L’Hour 2020), and MASC estimators by how well they predict
a zero treatment effect for untreated units. We find evidence
that MASC has lower mean-squared prediction error than the
other three alternatives in this application because it is able to
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adapt to cases where either SC or matching would do well. Then,
in Section 5, we use the same data to re-estimate the effect of
terrorism on the GDP of the Basque Country.

Our article is related to a growing literature on SC (see Abadie
2020, for a recent survey). The closest work to ours is the article
by Abadie and L’Hour (2020), who propose the penalized SC
estimator. The penalized SC and MASC estimators are different,
but related in that both assign weights to untreated units while
taking into consideration their distance from the treated unit in
terms of pretreatment characteristics. In Section 2.6, we show
that the penalized SC estimator is the solution to a constrained
version of the problem implicitly solved by MASC. Thus, the
MASC is a more flexible estimator than the penalized SC. While
this does not mean it will have lower prediction error in practice,
our empirical results in Sections 4 and 5 show that, at least for the
Spanish data, the penalized SC estimator usually coincides with
the standard SC estimator, suggesting that the extra flexibility of
MASC can be useful.

Also closely related to our work are the articles by Athey et al.
(2019) and Viviano and Bradic (2019), who also consider the
benefits of model averaging in the context of comparative case
studies. The former authors combine several of the regularized
SC and matrix completion estimators developed in Doudchenko
and Imbens (2016) and Athey et al. (2018), while the latter
authors combine a large number of estimators from the machine
learning literature. MASC differs from the estimators in these
articles both in details and intent. The purpose of MASC is to
directly guard against the types of interpolation biases that can
occur with SC, and the extrapolation bias that can occur with
matching, by adaptively blending them together. Like Athey
et al. (2019), we also find that model averaging tends to work
quite well, in concordance with a recurring finding of the eco-
nomic forecasting literature (see, e.g., Stock and Watson 2004,
2006). A contrast with Athey et al. (2019), Viviano and Bradic
(2019), and much of the forecasting literature, is that the esti-
mators we average are purposefully chosen to be complemen-
tary. This is exactly the case when data-driven model averaging
should be especially beneficial; see, for example, Breiman (1996)
or Elliot (2011).

2. Synthetic Control and Matching
2.1. Setup

Let Yit denote a scalar outcome for cross-sectional units i at
times t = 1, . . . , T, and let Di ∈ {0, 1} denote a time-invariant
binary treatment group indicator. Units in the treated group
become treated at an event date, t�, so that treatment status in
time t is given by Dit ≡ Di1[t ≥ t�]. Associated with the
outcome and treatment are potential outcomes Yit(0) and Yit(1),
which are related to the observed outcome via Yit = DitYit(1)+
(1 − Dit)Yit(0). We also observe a k-dimensional vector of pre-
treatment covariates, Xi, the components of which will typically
include some or all of the pretreatment outcomes (Yit for t < t�),
as well as potentially other predetermined characteristics.

Our goal is to estimate the average treatment on the treated
(ATT),

ATTt ≡ E[Yit(1) − Yit(0)|Di = 1]
= E[Yit|Di = 1] − E[Yit(0)|Di = 1] (1)

where t ≥ t� is some period after the event date, and E

expectation taken with respect to the underlying joint distri-
bution of ({Yit(0), Yit(1), Yit}T

t=1, Di, Xi), which we view as ex-
ante identically distributed across cross-sectional units i. Iden-
tifying the ATT is a matter of identifying the mean untreated
outcomes for the treated group in the post-period, that is, βt ≡
E[Yit(0)|Di = 1]. A common approach for this is to assume
that all differences between the treated and untreated units can
be eliminated by conditioning on Xi. The formal assumption
consists of the following two parts.

Assumption 1. (Selection on observables). If x is in the supports
of both Xi|Di = 0 and Xi|Di = 1, then E[Yit(0)|Di = 1, Xi =
x] = E[Yit(0)|Di = 0, Xi = x] for all t ≥ t�.

Assumption 2. (Overlap). The support of Xi|Di = 1 is contained
in the support of Xi|Di = 0.

Assumption 1 is a mean-independence version of what is
variously described in the literature as ignorable treatment
assignment (Rosenbaum and Rubin 1983), unconfoundedness
(Imbens and Rubin 2015), or selection on observables (Barnow,
Cain, and Goldberger 1980; Heckman and Robb 1985). Together
with Assumption 2, it implies that for posttreatment periods
t ≥ t�

βt = E
[
E[Yit|Di = 0, Xi]

∣∣∣Di = 1
]

≡ E [γt(Xi)|Di = 1] ,

where γt(x) ≡ E[Yit|Di = 0, Xi = x]. (2)

That is, βt is point identified by the outcomes for the untreated
group, conditional on covariates, after re-weighting by the dis-
tribution of these covariates in the treated group. For further
discussion, see, for example, Heckman, Ichimura, and Todd
(1997, 1998), Imbens (2004, 2015), or Imbens and Rubin (2015).

Suppose now that we observe a sample of n + 1 real-
izations {(yi1, . . . , yiT , di, xi)}n+1

i=1 from the distribution of
(Yi1, . . . , YiT , Di, Xi). How exactly the sample is drawn is not
relevant to the points we will make. For example, it could be that
each unit is drawn once with stochastic variation coming from
transitory time series innovations. This possibility is allowed for
in the factor and autoregressive models considered by Abadie,
Diamond, and Hainmueller (2010, Section 2.2), Abadie (2020,
sec. 3.3), and Chernozhukov, Wuthrich, and Zhu (2020), among
others.

Our focus in this article is the comparative case study set-
ting considered by Abadie and Gardeazabal (2003) and Abadie,
Diamond, and Hainmueller (2010, 2015), in which the sample
drawn contains only a single treated unit. We label this treated
unit as i = 1, so that d1 = 1, while di = 0 for all n remaining
units i ≥ 2. Since we only have a single treated unit, we estimate
E[Yit|Di = 1] by the realization of Y1t in the post-period.
Similarly, since the empirical distribution of Xi given Di = 1
is simply a point mass at x1, we estimate βt with an estimator of
γt(x1). Thus, we focus on a class of estimators for the ATT of the
form

ÂTTt ≡ y1t − γ̂t(x1), (3)

where γ̂t(x1) is an estimator of γt(x1). Note that while Assump-
tions 1 and 2 justify an interest in estimating γt(x1), there is no
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presumption that any of the untreated units in the sample have
pretreatment covariates x1.

The problem we focus on is how to construct γ̂t(x1). The
estimators we consider are all of the form

γ̂t =
∑
i≥2

wiyit ≡ y′
0tw (4)

where w ∈ Rn are weights applied to the observed outcomes
y0t ∈ Rn for the untreated units at time t. The weights will
always be assumed to live in the (n − 1)-dimensional simplex

S ≡
⎧⎨
⎩w ∈ Rn :

∑
j

wj = 1 and wj ≥ 0 for all j

⎫⎬
⎭ , (5)

so that γ̂t is a convex weighted average of the outcomes for the
untreated units at time t. The question is how to choose the
weights, w.

2.2. Extrapolation Bias and Interpolation Bias

Consider an estimator of form (4), and write it as

γ̂t =
∑
i≥2

wi (γt(xi) + uit) =
signal︷ ︸︸ ︷∑

i≥2
wiγt(xi)+

noise︷ ︸︸ ︷∑
i≥2

wiuit , (6)

where uit ≡ yit − γt(xi) denotes the deviation between yit and
its conditional mean. Our focus in this article is on the signal
term in Equation (6) and under what conditions it can replicate
γt(x1). That is, we are concerned with the bias of estimators of
form (4), as captured by the behavior of Equation (6) when uit =
0 for all i. We can decompose this bias into two components:

γt(x1) −
∑
i≥2

wiγt(xi)

︸ ︷︷ ︸
≡Bias(w)

=
⎡
⎣γt(x1) − γt

⎛
⎝∑

i≥2
wixi

⎞
⎠

⎤
⎦

︸ ︷︷ ︸
≡ExtBias(w)

+
⎡
⎣γt

⎛
⎝∑

i≥2
wixi

⎞
⎠ −

∑
i≥2

wiγt(xi)

⎤
⎦

︸ ︷︷ ︸
≡IntBias(w)

,

where ExtBias(w) is the extrapolation bias and IntBias(w) is the
interpolation bias.

To see the justification of these terms, consider a simple case
in which there are two untreated units (n = 3), and xi ≡ xi is
scalar (k = 1). Figure 1 plots (xi, γt(xi)) for i = 1, 2, 3, as well as
γt(x) as a function of x. Notice that x1 lies between x2 and x3, so
that it is an element of their convex hull.

One way to use the conditional means of the untreated
units (γt(x2) and γt(x3)) to approximate that of the treated unit
(γt(x1)) is to linearly interpolate between x2 and x3 to obtain

γ li
t ≡ γt(x2) + (γt(x3) − γt(x2))

(
x1 − x2
x3 − x2

)
.

This is equivalent to setting w2 and w3 to be

wli
2 ≡ 1 −

(
x1 − x2
x3 − x2

)
and wli

3 ≡
(

x1 − x2
x3 − x2

)
.

Figure 1. Extrapolation vs. interpolation bias.

Since x1 = wli
2x2 + wli

3x3, the extrapolation bias associated
with the weights wli ≡ (wli

2 , wli
3) is zero. However, as shown in

Figure 1, there is still bias due to interpolation, because γt(x) is
not a linear function of x, and thus

IntBias(wli) = γt
(

wli
2x2 + wli

3x3
)

−
[

wli
2γt(x2) + wli

3γt(x3)
]

�= 0.

Another way to use the untreated units is to simply use the
conditional mean for the unit whose value of xi is closest to
x1. In Figure 1, this is the second untreated unit, i = 2. The
weights for this approximation strategy are the nearest neighbor
weights of wnn

2 = 1 and wnn
3 = 0, which produce γt(x2) as an

approximation to γt(x1). This approach does not interpolate, so

IntBias(wnn) = γt(1 · x2 + 0 · x3)

− (1 · γ2(x2) + 0 · γ3(x3)) = 0.

However, it does extrapolate, creating bias to the extent that
γt(x1) �= γt(x2).

The estimators we consider in this article aim to control
interpolation bias, extrapolation bias, or a combination of both,
by minimizing bounds on these quantities. Assuming that γt is
Lipschitz, the magnitude of extrapolation bias can be bounded
by

|ExtBias(w)| ≤ c

∥∥∥∥∥∥x1 −
∑
i≥2

wixi

∥∥∥∥∥∥ ≡ c × Ext(w),

where c > 0 is the Lipschitz constant. Under the same Lipschitz
assumption, and assuming that interpolation is actually possi-
ble, so that the weights can be chosen to satisfy x1 = ∑

i≥2 wixi
(that is, x1 is in the convex hull of {xi}i≥2), the magnitude of
interpolation bias can be bounded by

|IntBias(w)| =
∣∣∣∣∣∣
∑
i≥2

wi (γt(x1) − γt(xi))

∣∣∣∣∣∣
≤

∑
i≥2

wi|γt(x1) − γt(xi)| ≤ c
∑
i≥2

wi‖x1 − xi‖

≡ c × Int(w). (7)
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Figure 2. The potential for interpolation bias with the SC estimator.
Notes: This figure depicts a simulation draw from the empirical Monte Carlo described in Section 4.6, using Rioja as the placebo and setting Xi to include pre-treatment
outcomes (and no other covariates). The vertical dashed line indicates the beginning of the treatment period. Panel (a) depicts selected control regions which are assigned
a weight of at least 0.15 by one of the estimators. Markers indicate which of these controls are assigned weight in the different estimators. Panel (a) plots each estimator
using the same markers as in panel (b). In panel (a), paths of GDP per capita over time are plotted relative to the placebo treated region, which is the path lying on the
y-intercept. Panel (b) plots the fit and treatment effects (prediction error) for each estimator.

Thus, by choosing w to minimize Ext(w) and/or Int(w), one can
control extrapolation and/or interpolation bias.

2.3. The Synthetic Control Estimator

The SC estimator of γt(x1) proposed by Abadie and Gardeazabal
(2003) and later elaborated by Abadie, Diamond, and Hain-
mueller (2010, 2015) is defined as follows:

γ̂ sc
t ≡ y′

0tŵ
sc where

ŵsc ≡ arg minw∈S
∥∥x1 − x′

0w
∥∥2

≡ arg minw∈SExt(w)2, (8)

and where we have organized the untreated unit covariates into
an n × k matrix x0. The Euclidean norm in the definition of
Ext(w) might be weighted by some symmetric, positive semidef-
inite matrix, but we omit this from the notation for simplicity.
The SC weights, ŵsc, are chosen so that the weighted average of
covariates among the untreated units comes as close as possible
to matching the covariate vector of the treated unit, subject to
the convexity constraint that they are nonnegative and sum to
unity.

The SC estimator has a number of attractive properties. By
construction, it minimizes the quantity Ext(w) that bounds
extrapolation bias. If this quantity can be made zero, then the SC
estimator will have no extrapolation bias. This stands in contrast
to linear regression, which is known to be subject to potentially
large extrapolation biases depending on how it is specified (see
Imbens, 2004, pg. 13, or Abadie, 2020). Another benefit of the

SC estimator is that the weights ŵsc are generally sparse, in
the sense that they are only non-zero for a few untreated units
(Abadie and L’Hour 2020). This aids in transparency by provid-
ing a way for experts to use contextual knowledge to evaluate the
plausibility of the resulting estimates (Abadie 2020, sec. 4). Also,
solving for ŵsc only requires solving the quadratic program in
Equation (8), which is a convex optimization problem.

One concern with the SC estimator is that it is susceptible
to interpolation bias. This was noted by Abadie, Diamond, and
Hainmueller (2010, pp. 495 and 496), and has been discussed
more recently by Abadie and L’Hour (2020), although those
authors emphasize non-uniqueness issues that occur with many
treated or untreated units. In Figure 2, we illustrate how inter-
polation biases can arise with the SC estimator. This figure plots
several untreated units in a draw from the empirical Monte
Carlo simulation introduced in Section 4.6, which uses the
Spanish terrorism data of Abadie and Gardeazabal (2003). The
simulation considers a placebo exercise in which the “treated
unit” is not in fact treated, so that the ground-truth treatment
effect is known to be zero. The left-hand side of Figure 2 plots
the outcome paths of the untreated units relative to that of a
placebo treated unit, while the right-hand side depicts different
estimators, which should be zero in the post-period if they are
performing well.

Suppose that we follow the recent tradition in the SC lit-
erature of taking Xi to include all pretreatment outcomes and
no other covariates (Doudchenko and Imbens 2016; Ferman
2020). We temporarily focus on this case because it allows
us to examine the methods graphically. In the simulated data
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of Figure 2, this produces an SC estimator that is comprised
primarily of two regions that have GDP per capita quite different
from the placebo region. The SC estimator puts zero weight on
the region whose pre-period outcome path oscillates closely to
the treated region. Instead, it obtains the best pre-period fit by
weighting the two more distant regions. This choice of weights
minimizes extrapolation, but creates interpolation.

Whether such interpolation leads γ̂ sc
t to be biased depends

on the structure of the function γt(x). Assuming that x1 lies in
the convex hull of x0, the SC estimator will have no interpolation
bias (IntBias(ŵsc

) = 0) if and only if

∑
i≥2

ŵsc
i γt(xi) = γt(x1) = γt

⎛
⎝∑

i≥2
ŵsc

i xi

⎞
⎠ . (9)

In order for Equation (9) to hold, the function γt needs to be
linear in x on the empirical support of Xi. This is a restrictive
functional form assumption about an unknown function.

When Equation (9) is not satisfied, interpolation bias will
arise. This is illustrated in Figure 2, where the SC estimator fits
the pre-period path of the simulated treated unit by interpolat-
ing between two regions with very different pre-period paths.
However, condition (9) fails, and that the resulting interpola-
tion bias leads γ̂ sc

t to be a poor estimate of the post-treatment
outcomes of the treated unit. We emphasize that this bias stems
from the failure of Equation (9) even assuming perfect fit (x1 =
x′

0ŵsc); it is distinct from the bias due to imperfect fit consid-
ered by Ferman and Pinto (2019) and Ben-Michael, Feller, and
Rothstein (2019).

Of course, Figure 2 is just one simulation draw, and one
which we have selected to show how interpolation bias can arise.
The frequency with which it actually arises in applications is an
empirical question. We address this empirical question for the
Spanish data in Section 4, where we report the results from our
full placebo analysis and Monte Carlo simulations.

2.4. The Matching Estimator

Local nonparametric smoothing estimators are a classical way
to estimate γt(x1). In general, these estimators can be written as
follows:

γ̂ lo
t ≡

∑
i≥2

κ (‖xi − x1‖) yit ≡ y′
0tŵ

lo, (10)

where κ is a kernel function that determines the weight applied
to each untreated observation. For such an estimator to be local,
the function κ should be decreasing, so that untreated units with
predetermined characteristics more distant from the treated
unit are given less weight. Local smoothing estimators do not
require the linearity condition (9) that was required for the SC
estimator. Instead, they rely only on γt being sufficiently smooth
in its continuous components (e.g. Fan and Gijbels 1992).

Unlike the SC estimator, local smoothing estimators do not
necessarily have sparse, convex weights. However, the specific
class of k–nearest neighbors estimators (e.g., Cover 1968) does
have weights with these properties. Estimators based on the
nearest neighbors idea are widely used for causal inference
problems under Assumptions 1 and 2, in which case they are

commonly described as matching estimators (e.g. Dehejia and
Wahba 1999; Abadie and Imbens 2006).

The matching estimator we consider is defined by choosing
a positive integer and equally weighting the m untreated units
with pre-period characteristics closest to those of the treated
unit. That is,

γ̂ ma
t (m) ≡ y′

0tŵ
ma

(m), (11)

where the weights ŵma
i (m) are 1/m for the m units with smallest

‖xi − x1‖ and 0 for all other units. For simplicity, we assume
there are no ties. Note that this vector of weights can be written
as the solution to the optimization problem

ŵma
(m) = arg minw∈S

∑
i≥2

wi‖x1 − xi‖
︸ ︷︷ ︸

≡Int(w)

s.t. wi ≤ 1
m

for all i ≥ 2, (12)

since the wi corresponding to the smallest ‖x1 − xi‖ will be
pushed up against 1/m until the m smallest observations have
reached this bound, while all other wi will be set to 0.

Like the SC estimator, the matching estimator is a sparse,
convex weighted average of the post-period outcomes of the
untreated units. However, in contrast to the SC estimator, the
matching estimator aims to minimize Int(w), and thus to control
interpolation bias. For example, with m = 1, the matching
estimator selects a single region in Figure 2(a) that oscillates
around the placebo region, since its pre-period characteristics
are most similar to that of the placebo region. As a consequence,
the matching estimator is less susceptible to interpolation bias
than the SC estimator, and in this example provides a better
estimate of the post-treatment outcomes for the placebo region.

However, the matching estimator is more vulnerable to
extrapolation bias than the SC estimator. To see this, consider
Figure 3, which reports a different simulation draw. In this
draw, the matching estimator uses the single untreated unit
that has pre-period path closest to the treated unit, even though
their pre-period paths are not actually that close, resulting in
considerable bias. In contrast, the SC estimator weights two
distant regions in a way that provides an excellent fit to the
outcome path of the treated unit throughout both the pre- and
post-periods. This is consistent with a case in which γt is close
to linear, so that Equation (9) is close to satisfied, and the SC
estimator has little interpolation bias.

2.5. Model Averaging With the MASC Estimator

Both the SC and matching estimators share a number of
appealing properties in common. As illustrated in Figures 2
and 3, however, their drawbacks are different and diametrically
opposed: the SC estimator controls extrapolation bias but
not interpolation bias, while the matching estimator does the
opposite. This complementarity suggests that a model averaging
estimator will be able to harness the best properties of both the
matching and SC estimators. See, for example, the discussion
surrounding Breiman (1996, theor. 1).

With this motivation, we define the MASC estimator as

γ̂ masc
t ≡ φγ̂ ma

t (m) + (1 − φ)γ̂ sc
t ≡ y′

0tŵ
masc
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Figure 3. The potential for extrapolation bias with matching.
Notes: This figure depicts a simulation draw from the empirical Monte Carlo described in Section 4.6, using Navarre as the placebo and setting Xi to include pre-treatment
outcomes (and no other covariates). The vertical dashed line indicates the beginning of the treatment period. Panel (a) depicts selected control regions which are assigned
a weight of at least 0.15 by one of the estimators. Markers indicate which of these controls are assigned weight in the different estimators. Panel (a) plots each estimator
using the same markers as in panel (b). In panel (a), paths of GDP per capita over time are plotted relative to the placebo treated region, which is the path lying on the
y-intercept. Panel (b) plots the fit and treatment effects (prediction error) for each estimator.

where φ ∈ [0, 1] is a tuning parameter, and ŵmasc ≡ φŵma
(m)+

(1−φ)ŵsc. In Section 3, we provide a cross-validation procedure
for choosing φ and m. This allows the MASC to control both
interpolation and extrapolation biases in a data-driven way.
When interpolation bias is the chief concern, the procedure
makes the MASC estimator assign more weight to the matching
estimator. In Figure 2, it sets φ = 1 and m = 1, so that the
MASC exactly coincides with the 1-nearest-neighbor matching
estimator. On the other hand, when extrapolation bias is the
concern, the procedure assigns more weight to the SC estimator.
For example, in Figure 3, it sets φ = 0, so that the MASC exactly
coincides with the SC estimator.

Intermediate cases can also arise, as in the simulation draw
depicted in Figure 4. In this case, the linearity condition (9) fails,
so that the SC estimator suffers from interpolation bias. At the
same time, there are no untreated units that closely match the
pre-period path of the placebo unit, so the matching estimator
suffers from extrapolation bias. The cross-validation procedure
chooses φ ≈ .5, which allows the MASC estimator to mix the SC
estimator with the matching estimator, mitigating both sources
of bias.

2.6. The Penalized Synthetic Control Estimator

A related, but different estimator has recently been proposed
by Abadie and L’Hour (2020). Those authors start with the
SC estimator and add a penalty that discourages choosing
units far from the treated unit. Their penalized SC estimator is
defined as

γ̂
pen
t ≡ y′

0tŵ
pen with

ŵpen ≡ arg minw∈S (1 − π)‖x1 − x′
0w‖2

+π

⎛
⎝∑

i≥2
wi‖xi − x1‖2

⎞
⎠ , (13)

where π ∈ (0, 1] is a tuning parameter chosen through cross-
validation that controls the penalty incurred by weighting
untreated units with pre-treatment characteristics different
from the treated unit. With π = 0, (13) would reduced to
the usual (unpenalized) SC estimator, γ̂ sc

t . Abadie and L’Hour
(2020) exclude π = 0, but consider the limiting case π → 0,
which they refer to as “pure synthetic control.” With π = 1, the
penalized SC estimator is equal to γ̂ ma

t (m) with m = 1. (Note
that Abadie and L’Hour (2020) parameterize their criterion
function slightly differently by normalizing (1 − π) to 1 and
allowing any π > 0. The two formulations are equivalent.)

The optimization problem solved by the penalized SC esti-
mator is a constrained version of the one implicitly solved by
the MASC estimator. This is because Equation (13) can also be
written as follows:

ŵpen = arg minwa,wb∈S (1 − π)‖x1 − x′
0wa‖2

+π

⎛
⎝∑

i≥2
wb

i ‖xi − x1‖2

⎞
⎠ s.t. wa = wb,

whereas ŵmasc is the solution to this program (with π replaced
by φ) when m is fixed at 1 and the constraint wa = wb is
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Figure 4. MASC adapts to control both extrapolation and interpolation bias.
Notes: This figure depicts a simulation draw from the empirical Monte Carlo described in Section 4.6, using Rioja as the placebo and setting Xi to include pre-treatment
outcomes (and no other covariates). The vertical dashed line indicates the beginning of the treatment period. Panel (a) depicts selected control regions which are assigned
a weight of at least 0.15 by one of the estimators. Markers indicate which of these controls are assigned weight in the different estimators. Panel (a) plots each estimator
using the same markers as in panel (b). In panel (a), paths of GDP per capita over time are plotted relative to the placebo treated region, which is the path lying on the
y-intercept. Panel (b) plots the fit and treatment effects (prediction error) for each estimator.

dropped. Note that when this constraint is dropped the problem
becomes separable in wa and wb, and the squares on the norms
can be removed without changing the optimal solutions. While
the MASC estimator takes a convex combination of the SC and
matching estimators—which respectively minimize bounds on
extrapolation and interpolation bias—the penalized SC estima-
tor minimizes a convex combination of the (squared) SC and
matching objective functions. This can lead it to choose an
entirely different set of weights.

It is important to mention that we are ignoring a primary
motivation provided by Abadie and L’Hour (2020) for the
penalized SC estimator, which is its ability to solve the non-
uniqueness problem that can arise when solving the SC problem
(8). As Abadie and L’Hour (2020) discussed, this problem
is usually not an issue when there is a single treated unit,
which is the case we consider here. It becomes more likely to
be problematic with multiple treated units. In such settings,
one could modify the MASC so that it averages between the
matching and penalized SC estimators. We expect that the
resulting estimator would behave similar to the way the MASC
behaves when there is a single treated unit.

2.7. Sparsity

A key motivation for the SC method is sparsity in the weights. In
comparative case studies, sparsity facilitates the interpretation of
the counterfactual estimate and the recognition and assessment
of potential biases (see, e.g., Abadie 2020, sec. 4).

The sparsity properties of the MASC estimator are inherited
by those of the SC and MA estimators. Suppose that nsc of the
components of ŵsc are nonzero. Then at most nsc + m of the
components of ŵmasc are nonzero. In practice, we often find
that the untreated units given nonzero weights by the SC and
MA weighting schemes are partially overlapping, so that the
actual number of nonzero elements is smaller than this. The
smallest number of nonzero components that ŵmasc can have
is the minimum of m and nsc, which happens if φ = 1 or
φ = 0, respectively. Since m can be as small as 1, the MASC
weights could have only one nonzero weight. Thus, the MASC
is generically neither more nor less sparse than the SC, MA or
penalized SC estimators.

3. Cross-Validation

3.1. Definitions

In this section, we propose a cross-validation procedure for
choosing the tuning parameters for the estimators discussed
in the previous section. As in Abadie, Diamond, and Hain-
mueller (2015), our procedure is based on optimizing the fit
of the treated unit’s outcome series in the pretreatment period.
Whereas those authors used a single training-validation split,
our procedure uses a series of one-step ahead forecasts, each of
which is estimated using data only from periods prior to the
forecast date. This is called rolling-origin recalibration in the
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forecasting literature (e.g., Tashman 2000; Bergmeir and Benítez
2012), which is related to the rolling-window considered by
Swanson and White (1997). The procedure is attractive, because
it preserves the temporal structure of the forecasting problem.

We define our folds, f = 1, . . . , F, as consisting of data
running between two dates tf and t̄f in the pre-treatment period.
Let γ̂f (τ ) denote a generic estimator of the outcome in period
t̄f +1 based on data in fold f , where τ is a vector of tuning param-
eters. Our cross-validation procedure chooses τ to minimize the
average one-step ahead forecast error, which we denote as

cv(τ ) ≡ 1
F

F∑
f =1

(
y1(t̄f +1) − γ̂f (τ )

)2
. (14)

We consider the one-step ahead forecast primarily for con-
creteness; one can modify the criterion (14) to combine mul-
tiple forecast periods under different weights chosen by the
researcher. Our R package (https://github.com/maxkllgg/masc)
implements such a modification to allow for more general crite-
ria.

The largest that F can be is t� − 2 if we set tf = 1 and t̄f = f
for each f = 1, . . . , (t� − 2). In practice, we use fewer folds than
this, and prefer folds that are longer. The bias-variance trade-
offs that drive this choice are natural. Folds that end closer to the
treatment date (t̄f closer to t�) are likely to be more relevant to
the posttreatment period. They can also be made longer (t̄f −tf ),
so that the estimators use more data. On the other hand, we
expect that having more folds will decrease the variance of cv(τ )

in repeated samples. Similar trade-offs are also present in cross-
validation with independent and identically distributed data
(e.g. Hastie, Tibshirani, and Friedman 2009, pp. 242 and 243).
The added complication here is that not all folds are equally
valuable, so we prefer ones that use data closer to the actual
treatment date.

The parameters τ differ by estimator. The SC estimator has
no tuning parameters. (As mentioned earlier, the Euclidean
norm defining the SC or matching estimators could be weighted.
Abadie, Diamond, and Hainmueller (2015) treated the weights
as tuning parameters. We could do this as well, but we have
elected not to in the current article because optimizing over the
weights introduces computational issues that, while solvable,
are not the main focus of our article (Becker and Klößner 2017,
2018).) For the matching estimator, τ is the number of matches,
m. The MASC estimator has both m and the model average
parameter, φ. The penalized SC estimator has the penalty
parameter, π .

3.2. Computation

For the MASC estimator, it is straightforward to find the uncon-
strained minimum of cv(τ ) ≡ cv(φ, m) in φ for any fixed m.
Using least-squares algebra, the solution can be shown to be

φ̂(m) ≡
∑F

f =1(γ̂
ma
f (m) − γ̂ sc

f )(y1,t̄f +1 − γ̂ sc
f )∑F

f =1(γ̂
ma
f (m) − γ̂ sc

f )2
. (15)

This means that cross-validating the MASC is extremely easy
computationally. First, compute φ̂(m) for a set of potential

matches, m ∈ M. Then for each m ∈ M, set

φ̂�(m) ≡
⎧⎨
⎩

0, if φ̂(m) ≤ 0
1, if φ̂(m) ≥ 1
φ̂(m) otherwise

Finally set m̂� ≡ arg minm∈Mcv(φ̂�(m), m), and set φ̂� ≡
φ̂�(m̂�). The cross-validated MASC estimator is a weighted
average of γ̂ sc and γ̂ ma(m̂�) with weights (1 − φ̂�) and φ̂�,
respectively.

For the penalized SC estimator, cv(τ ) ≡ cv(π) is not nec-
essarily convex in π , which makes it harder to find the global
minimum. In the results ahead, we use a grid search to cross-
validate the penalized SC estimator.

4. Placebo Analyses

4.1. Design

We use a series of empirical placebo analyses to examine
the behavior of the estimators described in Section 2. These
exercises use the same data as in Abadie and Gardeazabal’s
(2003) application of the SC method to study the effect of
terrorism on per capita GDP in Spain. The data consist of
time series on per capita GDP running from 1955 to 1997
for 17 regions in Spain. Additionally, the data includes 12
other covariates observed intermittently for each region over
the same interval, representing educational attainment of the
labor force (share with primary, high school, or more than
high school education), investment (as a share of GDP),
sectoral shares (in agriculture/forestry/fishing, energy/water,
industry, construction/engineering, marketable services, or
nonmarketable services), and population density in each region.
The treated unit is the Basque Country, and the treatment is the
onset of separatist terrorism, which begins in 1970.

Following Abadie and Gardeazabal (2003), we take Xi to
include averages for the 13 characteristics from 1960 to 1969.
For the SC estimator, we use the same weighted norm selected
by Abadie and Gardeazabal (2003) when solving for the weights
in (8). For the penalized SC estimator, we present results both
with this norm (“PSC-AG”) and with a norm that weights each
component by its inverse standard deviation (“PSC-S”), as in
Abadie and L’Hour (2020, sec. 6). The matching estimator uses
this inverse standard deviation norm.

Abadie and Gardeazabal (2003) performed a placebo analysis
using Catalonia as the placebo region. Their stated rationale was
that Catalonia is similar to the Basque Country, but with lower
exposure to terrorism, and particularly salient for their results,
since it received the most weight in their application of the SC
method. They found that the SC estimator reproduced the actual
per capita GDP for Catalonia quite well, at least until the 1980s.
They interpreted this as evidence in support of their estimates
for the Basque Country.

Using the same logic, we extend this placebo exercise to
all of the untreated regions of Spain, with the exception of
the Balearic Islands, Extremadura, and Madrid. The reason for
excluding these three regions is that the SC estimator provides
a particularly poor fit to their pre-period paths. Given the poor
fit, one might argue that it is inappropriate to apply SC to these
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Table 1. Performance of alternative estimators in the main Spanish placebo analyses.

RMSPE Pre-PeriodFit

Placebo SC MASC PSC-S PSC-AG Matching SC MASC PSC-S PSC-AG Matching

Andalusia 501 512 356 507 551 3 15 95 35 58
(501) (264) (252) (293) (264)

Aragon 133 145 227 133 252 24 25 67 24 103
(133) (95) (124) (133) (154)

Asturias 903 787 1,001 903 709 34 75 48 34 120
(903) (532) (979) (903) (532)

Canary Isl 271 199 248 271 227 36 67 336 36 69
(271) (144) (169) (271) (154)

Cantabria 116 131 1,279 109 556 91 86 35 89 115
(116) (116) (1,279) (109) (547)

Cast-Leon 81 82 624 81 274 28 32 442 28 316
(81) (80) (488) (76) (274)

Cast-Mancha 378 271 99 378 328 60 100 145 60 72
(378) (87) (93) (378) (100)

Catalonia 252 268 1,468 252 1,351 18 44 1057 18 1295
(252) (252) (1,468) (239) (810)

Valencia 259 171 374 373 174 37 85 166 66 145
(259) (81) (248) (125) (115)

Galicia 105 99 411 105 422 21 22 316 21 296
(105) (64) (259) (82) (285)

Murcia 329 307 160 362 300 44 65 110 59 92
(329) (119) (160) (329) (155)

Navarre 230 230 397 230 1,034 23 23 76 23 425
(230) (230) (267) (230) (267)

Rioja 202 187 189 192 267 26 39 38 32 188

Average 289 261 526 300 496 28 47 272 40 253
(289) (173) (459) (258) (302)

Note: PSC-AG uses the weighted norm selected by Abadie and Gardeazabal (2003) when solving for the weights in Equation (8). PSC-S uses a norm weighted by the inverse
standard deviation of each component, as in Abadie and L’Hour (2020, sec. 6). Root mean square prediction errors in this table are calculated from 1970 to 1997. Pre-
period fit is calculated based on annual per capita GDP from 1960 to 1969. For reference, the pre-period fit of SC for the Basque Country is $94. The values in parentheses
represent the best possible (infeasible) RMSPE that each estimator could obtain for each region if tuning parameters were chosen directly to minimize it. Note that the
SC estimator has no such tuning parameters (hence its actual RMSPE is equivalent to its infeasible RMSPE). GDP per capita is measured in 1986 U.S. dollars.

regions. (We thank the associate editors for pointing this out
and suggesting that we exclude these three regions. Empirically,
we find that including or excluding these regions does not
materially change our findings about the relative performance
of the various estimators. Results including these regions are
provided in Supplemental Appendix C.)

The placebo analyses are conducted separately for each of the
remaining 13 untreated regions. We use the same methodology
described in Sections 2 and 3, except that now the “treated” unit
is a placebo region in which no intervention took place at t� =
1970. For each estimator, we use data from 1960 to 1969 and
cross-validate with F = 5 folds, each starting at tf = 1960 and
ending at t̄f ∈ {1964, 1965, . . . , 1968}. The number of matches
for the matching and MASC estimators is chosen from M =
{1, 2, . . . , 10}.

We calculate the mean squared prediction error (MSPE)
for each region by taking the differences between its actual
and forecasted outcome paths in each of the post-period years
(1970–1997), squaring these differences, and then averaging
the 28 years. (Our findings about the relative performance of
the various estimators do not materially change if we use a
shorter post-period, a point we demonstrate in Figure A.1 of
the Supplemental Appendix). This procedure produces a MSPE
for each placebo region and every estimator. As in Abadie and
Gardeazabal (2003), we interpret a low MSPE as evidence that
an estimator is performing well. Throughout our discussion, we
focus on the square root of the MSPE (the RMSPE) so that errors
are interpretable in units of GDP per capita.

4.2. Performance Across Estimators

Results for each placebo region are reported as rows in Table 1.
The final row averages values across the 13 placebo regions. The
first panel of columns in Table 1 compares the performance of
five alternative estimators across each placebo region in terms of
RMSPE. Qualitatively, the MASC tends to have lower RMSPE
than the other estimators, including the PSC-AG estimator,
which frequently coincides with the standard SC estimator. The
MASC adapts to regions such as Valencia where matching has
low RMSPE but SC has high RMSPE. It also adapts to regions
such as Catalonia, Galicia, and Navarre, where matching has
high RMSPE, but SC has low RMSPE. In regions like the Canary
Islands, Castile-La Mancha, and Rioja, the MASC combines SC
and matching in order to have lower RMSPE than both.

The five estimators exhibit noticeable quantitative differences
in performance. On average across the placebo regions, the
yearly RMSPE of MASC is $261 per person, equivalent to 4.3%
of GDP per capita in the Basque Country in 1969. By compari-
son, the SC estimator has an average yearly RMSPE of $289 per
person, which amounts to 4.7% of the Basque Country’s GDP
per capita. The PSC-AG estimator tends to perform worse, with
an average yearly RMSPE of $300 per person, amounting to 4.9%
of the Basque Country’s GDP per capita. Matching and PSC-S,
on the other hand, tend to have even larger prediction errors,
with average yearly RMSPEs of $496 and $526, respectively. To
put these estimates into perspective, the yearly GDP growth of
the Basque Country averaged $159 per person across the years
1955–1969. This means that the average yearly prediction error
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of the estimators ranges from 164% (MASC), to 182% (SC), to
189% (PSC-AG), and to over 300% (matching and PSC-S) of the
annual GDP growth in the treated region prior to the onset of
terrorism.

4.3. Pre-Period Fit and Post-Intervention Prediction Error

The performance of the SC estimator varies across placebo
regions. In some regions, its performance is similar to MASC,
while in others it performs considerably worse. There are two
possible explanations for why SC produces relatively large pre-
diction errors in certain placebo regions. One possible expla-
nation is that the synthetic unit does not fit the pre-period
paths in these regions. The other possible explanation is that
the pre-period fit is good, and the prediction error results from
the susceptibility of the SC estimator to interpolation bias. To
evaluate these explanations, we report the pre-period fit of the
SC estimator, in the second panel of columns in Table 1.

Overall, the SC estimator is able to fit the pre-period paths
of the placebo regions quite well. Indeed, for every one of the
placebo regions, we obtain a pre-period fit (RMSE) that is lower
than that obtained for the Basque Country, which is the actual
treated region. (We discuss these results in Section 5, where we
find the RMSE of SC when applied to the Basque Country to be
$94 per person.) However, the placebo regions with good (or
poor) pre-period fits do not necessarily have small (or large)
prediction errors. For example, the SC estimator fits the pre-
period data best in the regions of Andalusia and Cantabria. Yet,
the prediction error is high in one of these regions, Andalusia,
and low in the other region, Cantabria. Pre-period fit is not
necessarily a reliable indicator of small prediction error for the
other estimators either. For example, MASC has the worst pre-
period fit in Andalusia, where the prediction error is the second
lowest.

4.4. Cross-Validation and Prediction Error of MASC

The results in the first panel of columns in Table 1 suggest that
MASC performs relatively well compared to the other estima-
tors, at least in the current setting. However, MASC also has
non-negligible prediction errors in some placebo regions. One
potential reason for poor performance is that a suitable control
group simply does not exist; that is, no combination of φ and m
would lead to low prediction error. Another possibility is that a
suitable control group exists, but the cross-validation procedure
does a poor job locating it.

To distinguish between these two scenarios, we compare the
actual RMSPE against the best possible (infeasible) RMSPE that
MASC could obtain for each region if φ and m were chosen
directly to minimize it in the post-treatment period. These
results are reported in parentheses in the first panel of columns
in Table 1. Results are also reported for matching, PSC-AG, and
PSC-S estimators, which (like MASC) have tuning parameters
selected by cross-validation. The best possible infeasible RMSPE
that the SC estimator can achieve, on the other hand, is equiv-
alent to its actual RMSPE (and hence, the values reported in
parentheses are the same as the main values).

Averaging across regions for MASC, the minimum infeasible
RMSPE is 34% lower than the actual RMSPE. However, there is

a great deal of heterogeneity across regions. For example, the
MASC has a relatively high RMSPE in Navarre not because
the cross-validation procedure is failing, but because there is
no suitable control group (choice of φ or m) for that region.
On the other hand, MASC has relatively high prediction errors
for Castile-La Mancha and Murcia because the cross-validation
procedure selects a control group that does considerably worse
than the infeasible optimal one.

In Appendix B, we explore alternative cross-validation pro-
cedures based on multi-step ahead criteria. Our ability to assess
criteria that fully reflect the 28-year length of the post-period
is limited by the 15-year length of the pre-period. Our results,
though, suggest that multi-step ahead criteria return RMSPEs
that tend to be slightly higher than RMSPEs of the one-step
ahead rolling-origin cross-validation procedure used in our
main results.

4.5. Biases Due to Interpolation Versus Extrapolation

The results in the first panel of columns of Table 1 show that
MASC tends to have lower RMSPE than the other estimators
in the placebo analyses. In Figure 5, we investigate the reason
for this by plotting the pre-period fit (RMSE) and post-period
prediction error (RMSPE) as functions of φ and π for the
MASC and PSC-AG estimators. We report the average across
all placebo regions in dotted lines. We also report Castile-La
Mancha separately as a solid line, as an example placebo region
where MASC deviates from SC.

When φ = 0 the MASC estimator correspond to the stan-
dard SC estimator, which controls extrapolation bias by max-
imizing fit on pre-period outcomes. As π → 0, the PSC-
AG estimator also corresponds to the standard SC estimator
because, with only a small number of control regions, no region
falls in the convex span of the characteristics of other regions
(Abadie and L’Hour 2020). Panels (a) and (c) of Figure 5 show
how pre-period fit tends to deteriorate as φ and π increase.

At φ = π = 1, both the MASC and PSC-AG estimators
correspond to matching estimators which control interpola-
tion bias. Intermediate values of φ and π represent a trade-
off between controlling extrapolation and interpolation bias.
MASC captures this trade-off by assigning weight to both the
SC and matching estimators. PSC-AG captures it by changing
the relative penalty for giving weight to distant units.

Panels (b) and (d) of Figure 5 show the prediction errors of
MASC and PSC-AG. Average prediction error for the MASC
is minimized at around φ = 0.05, reflecting observation in
Section 4.2 that MASC is able to adapt to the regions where
SC performs well (where combining it with matching would
substantially increase prediction error), while also blending SC
and matching in the regions like Castile-La Mancha where doing
so can reduce prediction error. The prediction error of PSC-
AG is lowest at π ≈ 0 on average and individually for most
regions. One exception where PSC-AG deviates from SC and
performs well is Rioja, where it obtains its lowest RMSPE by
setting π = 0.10.

4.6. Monte Carlo Simulations

The placebo analyses in this section have been based on a given
dataset, that is, on one particular realization of the underlying
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Figure 5. Trading-off between fit and prediction error for MASC and penalized SC.
Note: Each graph depicts how error (prediction error or pre-period fit) evolves as we move from SCs toward matching for the given estimator. Pre-period fit is based on
annual per capita GDP from 1960 to 1969 with an unweighted norm. Outcomes are measured in 1986 U.S. dollars. For each placebo, the matching estimator (m) is fixed at
the value selected by cross-validation. For Castile-La Mancha, m = 9. π has been re-scaled so that π = 1 denotes the smallest value at which PSC-AG exactly corresponds
to a 1-nearest-neighbor estimator.

data generating process. This raises two questions. The first is
whether the relative performance of the alternative estimators
would change when looking across multiple realizations of the
same data-generating process. The second is how the estimators
would perform under alternative data-generating processes. To
answer both questions, we conducted a Monte Carlo study,
which we discuss in detail in Appendix D.

The results from this simulation support three key insights
from the placebo analyses: (i) MASC tends to have lower
RMSPE than the other estimators; (ii) the pre-period fit of
the SC estimator is not necessarily a strong indicator of its
prediction error; and (iii) the cross-validation procedure tends
to select suitable control groups for MASC when they exist.
However, one may prefer the SC estimator if data is generated
from a more restricted process in which regional characteristics
are driven only by a small number of latent factors, as a suitable
SC is more likely to exist in that setting.

5. Re-Examining the Economic Costs of Conflict
In this section, we re-analyze the Spanish terrorism application
of Abadie and Gardeazabal (2003). The goal is to assess if the

alternative estimators yield substantively different estimates of
the economic costs of conflict for the Basque Country. We
continue to use the same estimation procedures as in Section 4,
except that now the Basque Country is the treated unit. The
economic costs of conflict are calculated by taking the difference
between the Basque Country’s actual and forecasted outcome
path over the post-period.

Figure 6 plots the actual path of per capita GDP for the
Basque Country against the counterfactual paths constructed
by the MASC, SC, PSC-AG, PSC-S, and matching estimators. It
happens to be the case that, through cross-validation, the MASC
estimator selects φ = 0 and corresponds exactly to the original
SC estimator of Abadie and Gardeazabal (2003). Both of these
estimators average together Catalonia with a weight of 0.85 and
Madrid with a weight of 0.15. The PSC-AG estimator selects a
small but positive penalty π , so that it averages Catalonia with
a weight of 0.88 and Madrid with a weight of 0.12, leading to
a counterfactual that is very close to the original SC estimator
of Abadie and Gardeazabal (2003). The PSC-S estimator, on the
other hand, selects a larger penalty π > 0 and places virtually
all weight on Catalonia (the nearest neighbor of the Basque
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Figure 6. Actual and counterfactual per capita GDP of the Basque Country.
Note: The MASC selects φ = 0 for the Basque Country, so MASC and SC imply the
same counterfactual or the Basque Country. The PSC-AG selects a very small value
π > 0, so that its counterfactual differs to a visually indistinguishable extent from
SC. GDP per capita is measured in 1986 U.S. dollars.

Country) as a consequence. Its counterfactual therefore differs
slightly from the SC, MASC, and PSC-AG. The matching esti-
mator selects m = 2 by cross-validation, differing substantially
from the other estimators by placing equal weight on Catalonia
and Cantabria.

The estimator fits the actual path of per capita GDP in the
pre-period fairly closely, with a RMSE of $94. In the post-
period, it experiences a much smaller dip in GDP per capita
than the Basque Country actually experienced from the mid-
1970’s onward. Consequently, the MASC and SC imply a cost
of conflict of $580 per person per year. The PSC-AG has a
similar pre-period fit (an RMSE of $98) and implied cost of
conflict ($572 per person per year) to MASC and SC. PSC-S has
comparatively worse fit in the pre-period (an RMSE of $166) and
a smaller implied cost of conflict ($532 per person per year). The
matching estimator has much worse fit (an RMSE of $782) and
implies a positive effect of terrorism on per capita GDP of $331
per person per year.

Appendix Table A.2 reports the results of the placebo test
of Abadie, Diamond, and Hainmueller (2010), comparing the
SC and MASC estimators against their behaviors in the placebo
regions studied in Section 4.

6. Conclusion

One of the major impacts of the SC method has been to recast
longitudinal comparative case studies as prediction problems. In
this article, we made use of two tools from the machine learn-
ing and economic forecasting literature: model averaging and

rolling-origin forecast evaluation. By examining the weakness
of the SC estimator to interpolation bias, and the weakness of
the matching estimator to extrapolation bias, we showed how to
use these tools to build a third estimator, the MASC, that is able
to effectively avoid both sources of bias. Using both simulated
and empirical placebo studies, we found evidence that MASC
has lower MSPE than either the matching, SC, or penalized
SC estimators. We applied all these estimators to re–examine
Abadie and Gardeazabal’s (2003) application to the economic
costs of conflict in the Basque Country.

We have not discussed in detail the delicate issue of statistical
inference in comparative case studies. A variety of inferential
methods have been recently proposed for SC and related
methods. Li (2019) and Chernozhukov, Wuthrich, and Zhu
(2020) develop asymptotic methods that depend on having
many pre– and/or post– periods, while Arkhangelsky et al.
(2019) propose a jackknife under additional asymptotics in the
number of untreated units. Abadie, Diamond, and Hainmueller
(2010, 2015), Ferman and Pinto (2017), Firpo and Possebom
(2018), Chernozhukov, Wuthrich, and Zhu (2019) and Shaikh
and Toulis (2019) develop different types of non-asymptotic
randomization tests, while Cattaneo, Feng, and Titiunik (2019)
showed how to construct prediction intervals using non-
asymptotic bounds.

Supplementary Materials

The supplementary material contains additional results and discussion for
the placebo analyses and Monte Carlo simulations.
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